本文整理匯總了Python中pybrain.supervised.RPropMinusTrainer.trainEpochs方法的典型用法代碼示例。如果您正苦於以下問題:Python RPropMinusTrainer.trainEpochs方法的具體用法?Python RPropMinusTrainer.trainEpochs怎麽用?Python RPropMinusTrainer.trainEpochs使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類pybrain.supervised.RPropMinusTrainer
的用法示例。
在下文中一共展示了RPropMinusTrainer.trainEpochs方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: train
# 需要導入模塊: from pybrain.supervised import RPropMinusTrainer [as 別名]
# 或者: from pybrain.supervised.RPropMinusTrainer import trainEpochs [as 別名]
def train(self, params):
self.net.reset()
ds = SequentialDataSet(self.nDimInput, self.nDimOutput)
trainer = RPropMinusTrainer(self.net, dataset=ds, verbose=False)
history = self.window(self.history, params)
resets = self.window(self.resets, params)
for i in xrange(params['prediction_nstep'], len(history)):
if not resets[i-1]:
ds.addSample(self.inputEncoder.encode(history[i-params['prediction_nstep']]),
self.outputEncoder.encode(history[i][0]))
if resets[i]:
ds.newSequence()
# print ds.getSample(0)
# print ds.getSample(1)
# print ds.getSample(1000)
# print " training data size", ds.getLength(), " len(history) ", len(history), " self.history ", len(self.history)
# print ds
if len(history) > 1:
trainer.trainEpochs(params['num_epochs'])
self.net.reset()
for i in xrange(len(history) - params['prediction_nstep']):
symbol = history[i]
output = self.net.activate(ds.getSample(i)[0])
if resets[i]:
self.net.reset()
示例2: main
# 需要導入模塊: from pybrain.supervised import RPropMinusTrainer [as 別名]
# 或者: from pybrain.supervised.RPropMinusTrainer import trainEpochs [as 別名]
def main():
generated_data = [0 for i in range(10000)]
rate, data = get_data_from_wav("../../data/natabhairavi_violin.wav")
data = data[1000:190000]
print("Got wav")
ds = SequentialDataSet(1, 1)
for sample, next_sample in zip(data, cycle(data[1:])):
ds.addSample(sample, next_sample)
net = buildNetwork(1, 5, 1,
hiddenclass=LSTMLayer, outputbias=False, recurrent=True)
trainer = RPropMinusTrainer(net, dataset=ds)
train_errors = [] # save errors for plotting later
EPOCHS_PER_CYCLE = 5
CYCLES = 10
EPOCHS = EPOCHS_PER_CYCLE * CYCLES
for i in xrange(CYCLES):
trainer.trainEpochs(EPOCHS_PER_CYCLE)
train_errors.append(trainer.testOnData())
epoch = (i+1) * EPOCHS_PER_CYCLE
print("\r epoch {}/{}".format(epoch, EPOCHS), end="")
stdout.flush()
# predict new values
old_sample = [100]
for i in xrange(500000):
new_sample = net.activate(old_sample)
old_sample = new_sample
generated_data[i] = new_sample[0]
print(new_sample)
wavfile.write("../../output/test.wav", rate, np.array(generated_data))
示例3: train
# 需要導入模塊: from pybrain.supervised import RPropMinusTrainer [as 別名]
# 或者: from pybrain.supervised.RPropMinusTrainer import trainEpochs [as 別名]
def train(self, params):
n = params['encoding_num']
net = buildNetwork(n, params['num_cells'], n,
hiddenclass=LSTMLayer,
bias=True,
outputbias=params['output_bias'],
recurrent=True)
net.reset()
ds = SequentialDataSet(n, n)
trainer = RPropMinusTrainer(net, dataset=ds)
history = self.window(self.history, params)
resets = self.window(self.resets, params)
for i in xrange(1, len(history)):
if not resets[i-1]:
ds.addSample(self.encoder.encode(history[i-1]),
self.encoder.encode(history[i]))
if resets[i]:
ds.newSequence()
if len(history) > 1:
trainer.trainEpochs(params['num_epochs'])
net.reset()
for i in xrange(len(history) - 1):
symbol = history[i]
output = self.net.activate(self.encoder.encode(symbol))
predictions = self.encoder.classify(output, num=params['num_predictions'])
if resets[i]:
net.reset()
return net
示例4: train
# 需要導入模塊: from pybrain.supervised import RPropMinusTrainer [as 別名]
# 或者: from pybrain.supervised.RPropMinusTrainer import trainEpochs [as 別名]
def train(self, params):
"""
Train LSTM network on buffered dataset history
After training, run LSTM on history[:-1] to get the state correct
:param params:
:return:
"""
if params['reset_every_training']:
n = params['encoding_num']
self.net = buildNetwork(n, params['num_cells'], n,
hiddenclass=LSTMLayer,
bias=True,
outputbias=params['output_bias'],
recurrent=True)
self.net.reset()
# prepare training dataset
ds = SequentialDataSet(params['encoding_num'], params['encoding_num'])
history = self.window(self.history, params)
resets = self.window(self.resets, params)
for i in xrange(1, len(history)):
if not resets[i - 1]:
ds.addSample(self.encoder.encode(history[i - 1]),
self.encoder.encode(history[i]))
if resets[i]:
ds.newSequence()
print "Train LSTM network on buffered dataset of length ", len(history)
if params['num_epochs'] > 1:
trainer = RPropMinusTrainer(self.net,
dataset=ds,
verbose=params['verbosity'] > 0)
if len(history) > 1:
trainer.trainEpochs(params['num_epochs'])
# run network on buffered dataset after training to get the state right
self.net.reset()
for i in xrange(len(history) - 1):
symbol = history[i]
output = self.net.activate(self.encoder.encode(symbol))
self.encoder.classify(output, num=params['num_predictions'])
if resets[i]:
self.net.reset()
else:
self.trainer.setData(ds)
self.trainer.train()
# run network on buffered dataset after training to get the state right
self.net.reset()
for i in xrange(len(history) - 1):
symbol = history[i]
output = self.net.activate(self.encoder.encode(symbol))
self.encoder.classify(output, num=params['num_predictions'])
if resets[i]:
self.net.reset()
示例5: trainLSTMnet
# 需要導入模塊: from pybrain.supervised import RPropMinusTrainer [as 別名]
# 或者: from pybrain.supervised.RPropMinusTrainer import trainEpochs [as 別名]
def trainLSTMnet(net, numTrainSequence, seedSeq=1):
np.random.seed(seedSeq)
for _ in xrange(numTrainSequence):
(ds, in_seq, out_seq) = getReberDS(maxLength)
print("train seq", _, sequenceToWord(in_seq))
trainer = RPropMinusTrainer(net, dataset=ds)
trainer.trainEpochs(rptPerSeq)
return net
示例6: train
# 需要導入模塊: from pybrain.supervised import RPropMinusTrainer [as 別名]
# 或者: from pybrain.supervised.RPropMinusTrainer import trainEpochs [as 別名]
def train(d, cycles=100, epochs_per_cycle=7):
ds = SequentialDataSet(1, 1)
net = buildNetwork(1, 5, 1, hiddenclass=LSTMLayer, outputbias=False, recurrent=False)
for sample, next_sample in zip(d, cycle(d[1:])):
ds.addSample(sample, next_sample)
trainer = RPropMinusTrainer(net, dataset=ds)
train_errors = [] # save errors for plotting later
for i in xrange(cycles):
trainer.trainEpochs(epochs_per_cycle)
train_errors.append(trainer.testOnData())
stdout.flush()
return net, train_errors
示例7: train
# 需要導入模塊: from pybrain.supervised import RPropMinusTrainer [as 別名]
# 或者: from pybrain.supervised.RPropMinusTrainer import trainEpochs [as 別名]
def train (ds, net):
# Train the network
trainer = RPropMinusTrainer(net, dataset=ds)
train_errors = [] # save errors for plotting later
EPOCHS_PER_CYCLE = 5
CYCLES = 100
EPOCHS = EPOCHS_PER_CYCLE * CYCLES
for i in xrange(CYCLES):
trainer.trainEpochs(EPOCHS_PER_CYCLE)
error = trainer.testOnData()
train_errors.append(error)
epoch = (i+1) * EPOCHS_PER_CYCLE
print("\r epoch {}/{}".format(epoch, EPOCHS))
stdout.flush()
# print("final error =", train_errors[-1])
return train_errors, EPOCHS, EPOCHS_PER_CYCLE
示例8: train
# 需要導入模塊: from pybrain.supervised import RPropMinusTrainer [as 別名]
# 或者: from pybrain.supervised.RPropMinusTrainer import trainEpochs [as 別名]
def train(self, params, verbose=False):
if params['reset_every_training']:
if verbose:
print 'create lstm network'
random.seed(6)
if params['output_encoding'] == None:
self.net = buildNetwork(self.nDimInput, params['num_cells'], self.nDimOutput,
hiddenclass=LSTMLayer, bias=True, outputbias=True, recurrent=True)
elif params['output_encoding'] == 'likelihood':
self.net = buildNetwork(self.nDimInput, params['num_cells'], self.nDimOutput,
hiddenclass=LSTMLayer, bias=True, outclass=SigmoidLayer, recurrent=True)
self.net.reset()
ds = SequentialDataSet(self.nDimInput, self.nDimOutput)
networkInput = self.window(self.networkInput, params)
targetPrediction = self.window(self.targetPrediction, params)
# prepare a training data-set using the history
for i in xrange(len(networkInput)):
ds.addSample(self.inputEncoder.encode(networkInput[i]),
self.outputEncoder.encode(targetPrediction[i]))
if params['num_epochs'] > 1:
trainer = RPropMinusTrainer(self.net, dataset=ds, verbose=verbose)
if verbose:
print " train LSTM on ", len(ds), " records for ", params['num_epochs'], " epochs "
if len(networkInput) > 1:
trainer.trainEpochs(params['num_epochs'])
else:
self.trainer.setData(ds)
self.trainer.train()
# run through the training dataset to get the lstm network state right
self.net.reset()
for i in xrange(len(networkInput)):
self.net.activate(ds.getSample(i)[0])
示例9: handle
# 需要導入模塊: from pybrain.supervised import RPropMinusTrainer [as 別名]
# 或者: from pybrain.supervised.RPropMinusTrainer import trainEpochs [as 別名]
def handle(self, *args, **options):
ticker = args[0]
print("****** STARTING PREDICTOR " + ticker + " ******* ")
prices = Price.objects.filter(symbol=ticker).order_by('-created_on').values_list('price',flat=True)
data = normalization(list(prices[0:NUM_MINUTES_BACK].reverse()))
data = [ int(x * MULT_FACTOR) for x in data]
print(data)
ds = SupervisedDataSet(5, 1)
try:
for i,val in enumerate(data):
DS.addSample((data[i], data[i+1], data[i+2], data[i+3], data[i+4]), (data[i+5],))
except Exception:
pass;
net = buildNetwork(5, 40, 1,
hiddenclass=LSTMLayer, outputbias=False, recurrent=True)
trainer = RPropMinusTrainer(net, dataset=ds)
train_errors = [] # save errors for plotting later
EPOCHS_PER_CYCLE = 5
CYCLES = 100
EPOCHS = EPOCHS_PER_CYCLE * CYCLES
for i in xrange(CYCLES):
trainer.trainEpochs(EPOCHS_PER_CYCLE)
train_errors.append(trainer.testOnData())
epoch = (i+1) * EPOCHS_PER_CYCLE
print("\r epoch {}/{}".format(epoch, EPOCHS), end="")
stdout.flush()
print()
print("final error =", train_errors[-1])
for sample, target in ds.getSequenceIterator(0):
show_pred_sample = net.activate(sample) / MULT_FACTOR
show_sample = sample / MULT_FACTOR
show_target = target / MULT_FACTOR
show_diff = show_pred_sample - show_target
show_diff_pct = 100 * show_diff / show_pred_sample
print("{} => {}, act {}. ({}%)".format(show_sample[0],round(show_pred_sample[0],3),show_target[0],int(round(show_diff_pct[0],0))))
示例10: say_hello_text
# 需要導入模塊: from pybrain.supervised import RPropMinusTrainer [as 別名]
# 或者: from pybrain.supervised.RPropMinusTrainer import trainEpochs [as 別名]
def say_hello_text(username = "World",text="You are good"):
object_data_new = pd.read_csv('/Users/ruiyun_zhou/Documents/cmpe-274/data/data.csv')
data_area_new = object_data_new[object_data_new.Area==username]
data_area_new_1=data_area_new[data_area_new.Disease== text]
data_list_new = data_area_new_1['Count'].values.tolist()
print data_list_new.__len__()
data_list=data_list_new
ds = SequentialDataSet(1,1)
isZero=0;
for sample,next_sample in zip(data_list,cycle(data_list[1:])):
ds.addSample(sample, next_sample)
if sample:
isZero=1
if(isZero==0):
return '[0, 0]'
net = buildNetwork(1,5,1,hiddenclass=LSTMLayer,outputbias=False,recurrent=True)
trainer = RPropMinusTrainer(net, dataset=ds)
train_errors = [] # save errors for plotting later
EPOCHS_PER_CYCLE = 5
CYCLES = 10
EPOCHS = EPOCHS_PER_CYCLE * CYCLES
for i in xrange(CYCLES):
print "Doing epoch %d" %i
trainer.trainEpochs(EPOCHS_PER_CYCLE)
train_errors.append(trainer.testOnData())
epoch = (i+1) * EPOCHS_PER_CYCLE
# return '<p>%d</p>\n' % (data_list_new.__len__())
# print("final error =", train_errors[-1])
# print "Value for last week is %4.1d" % abs(data_list[-1])
# print "Value for next week is %4.1d" % abs(net.activate(data_list[-1]))
# result = (abs(data_list[-1]))
result = (abs(net.activate(data_list[-1])))
result_1 = (abs(net.activate(result)))
return '[%d, %d]' % (result,result_1)
示例11: train
# 需要導入模塊: from pybrain.supervised import RPropMinusTrainer [as 別名]
# 或者: from pybrain.supervised.RPropMinusTrainer import trainEpochs [as 別名]
def train(data,name):
ds = SequentialDataSet(1, 1)
for sample, next_sample in zip(data, cycle(data[1:])):
ds.addSample(sample, next_sample)
net = buildNetwork(1, 200, 1, hiddenclass=LSTMLayer, outputbias=False, recurrent=True)
trainer = RPropMinusTrainer(net, dataset=ds)
train_errors = [] # save errors for plotting later
EPOCHS_PER_CYCLE = 5
CYCLES = 20
EPOCHS = EPOCHS_PER_CYCLE * CYCLES
store=[]
for i in xrange(CYCLES):
trainer.trainEpochs(EPOCHS_PER_CYCLE)
train_errors.append(trainer.testOnData())
epoch = (i+1) * EPOCHS_PER_CYCLE
print("\r epoch {}/{}".format(epoch, EPOCHS))
print tm.time()-atm
stdout.flush()
for sample, target in ds.getSequenceIterator(0):
store.append(net.activate(sample))
abcd=pd.DataFrame(store)
abcd.to_csv(pwd+"lstmdata/"+name+".csv",encoding='utf-8')
print "result printed to file"
示例12: Train
# 需要導入模塊: from pybrain.supervised import RPropMinusTrainer [as 別名]
# 或者: from pybrain.supervised.RPropMinusTrainer import trainEpochs [as 別名]
def Train(self, dataset, error_observer, logger, dump_file):
gradientCheck(self.m_net)
net_dataset = SequenceClassificationDataSet(4, 2)
for record in dataset:
net_dataset.newSequence()
gl_raises = record.GetGlRises()
gl_min = record.GetNocturnalMinimum()
if DayFeatureExpert.IsHypoglycemia(record):
out_class = [1, 0]
else:
out_class = [0, 1]
for gl_raise in gl_raises:
net_dataset.addSample([gl_raise[0][0].total_seconds() / (24*3600), gl_raise[0][1] / 300, gl_raise[1][0].total_seconds() / (24*3600), gl_raise[1][1] / 300] , out_class)
train_dataset, test_dataset = net_dataset.splitWithProportion(0.8)
trainer = RPropMinusTrainer(self.m_net, dataset=train_dataset, momentum=0.8, learningrate=0.3, lrdecay=0.9, weightdecay=0.01, verbose=True)
validator = ModuleValidator()
train_error = []
test_error = []
for i in range(0, 80):
trainer.trainEpochs(1)
train_error.append(validator.MSE(self.m_net, train_dataset)) # here is validate func, think it may be parametrised by custom core function
test_error.append(validator.MSE(self.m_net, test_dataset))
print train_error
print test_error
error_observer(train_error, test_error)
gradientCheck(self.m_net)
dump_file = open(dump_file, 'wb')
pickle.dump(self.m_net, dump_file)
示例13: str
# 需要導入模塊: from pybrain.supervised import RPropMinusTrainer [as 別名]
# 或者: from pybrain.supervised.RPropMinusTrainer import trainEpochs [as 別名]
net.addConnection(FullConnection(net['hidden' + str(layerCount - 1)], net['out'], name='cOut'))
net.sortModules()
from pybrain.supervised import RPropMinusTrainer
trainer = RPropMinusTrainer(net, dataset=ds)
epochcount = 0
while True:
startingnote = random.choice(range(1, 17))
startingnote2 = random.choice(range(1, 17))
startingduration = random.choice(range(1,17))
startingduration2 = random.choice(range(1, 17))
song = [[startingnote, startingduration, 1, 1, 0, startingnote2, startingduration2, 1, 1, 0]]
length = 50
while len(song) < length:
song.append(net.activate(song[-1]).tolist())
newsong = []
for x in song:
newx = []
newy = []
for i in x:
if len(newx) < 5:
newx.append(int(i))
else:
newy.append(int(i))
newsong.append(newx)
newsong.append(newy)
print newsong
print "The above song is after " + str(epochcount) + " epochs."
trainer.trainEpochs(epochs=1)
epochcount += 1
示例14: buildNetwork
# 需要導入模塊: from pybrain.supervised import RPropMinusTrainer [as 別名]
# 或者: from pybrain.supervised.RPropMinusTrainer import trainEpochs [as 別名]
net = buildNetwork(1, 12, 1, hiddenclass=LSTMLayer, peepholes = False, outputbias=False, recurrent=True)
# net = buildNetwork(1, 1, 1, hiddenclass=LSTMLayer, peepholes = True, outputbias=False, recurrent=True)
# rnn = buildNetwork( trndata.indim, 5, trndata.outdim, hiddenclass=LSTMLayer, outclass=SoftmaxLayer, outputbias=False, recurrent=True)
from pybrain.supervised import RPropMinusTrainer
from sys import stdout
trainer = RPropMinusTrainer(net, dataset=ds, verbose = True)
#trainer.trainUntilConvergence()
train_errors = [] # save errors for plotting later
EPOCHS_PER_CYCLE = 100 # increasing the epochs to 20, decreases accuracy drastically, decreasing epochs is desiredepoch # 5 err = 0.04
CYCLES = 10 # vary the epochs adn the cycles and the LSTM cells to get more accurate results.
EPOCHS = EPOCHS_PER_CYCLE * CYCLES
for i in xrange(CYCLES):
trainer.trainEpochs(EPOCHS_PER_CYCLE) # train on the given data set for given number of epochs
train_errors.append(trainer.testOnData())
epoch = (i+1) * EPOCHS_PER_CYCLE
print("\r epoch {}/{}".format(epoch, EPOCHS), end="")
stdout.flush()
print()
print("final error =", train_errors[-1])
## Plot the data and the training
import matplotlib.pyplot as plt
plt.plot(range(0, EPOCHS, EPOCHS_PER_CYCLE), train_errors)
plt.xlabel('epoch')
plt.ylabel('error')
plt.show()
示例15: buildNetwork
# 需要導入模塊: from pybrain.supervised import RPropMinusTrainer [as 別名]
# 或者: from pybrain.supervised.RPropMinusTrainer import trainEpochs [as 別名]
net.addConnection(FullConnection(net["input"], net["hidden1"], name="c1"))
net.addConnection(FullConnection(net["hidden1"], net["hidden2"], name="c3"))
net.addConnection(FullConnection(net["bias"], net["hidden2"], name="c4"))
net.addConnection(FullConnection(net["hidden2"], net["output"], name="c5"))
net.addRecurrentConnection(FullConnection(net["hidden1"], net["hidden1"], name="c6"))
net.sortModules()
# net = buildNetwork(n_input, 256, n_output, hiddenclass=LSTMLayer, outclass=TanhLayer, outputbias=False, recurrent=True)
# net = NetworkReader.readFrom('signal_weight.xml')
# train network
trainer = RPropMinusTrainer(net, dataset=training_dataset, verbose=True, weightdecay=0.01)
# trainer = BackpropTrainer(net, dataset=training_dataset, learningrate = 0.04, momentum = 0.96, weightdecay = 0.02, verbose = True)
for i in range(100):
# train the network for 1 epoch
trainer.trainEpochs(5)
# evaluate the result on the training and test data
trnresult = percentError(trainer.testOnClassData(), training_dataset['class'])
tstresult = percentError(trainer.testOnClassData(dataset=testing_dataset), testing_dataset['class'])
# print the result
print("epoch: %4d" % trainer.totalepochs, \
" train error: %5.2f%%" % trnresult, \
" test error: %5.2f%%" % tstresult)
if tstresult <= 0.5 :
print('Bingo !!!!!!!!!!!!!!!!!!!!!!')
break
# export network
NetworkWriter.writeToFile(net, 'signal_weight.xml')