本文整理匯總了Python中pybrain.supervised.RPropMinusTrainer類的典型用法代碼示例。如果您正苦於以下問題:Python RPropMinusTrainer類的具體用法?Python RPropMinusTrainer怎麽用?Python RPropMinusTrainer使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。
在下文中一共展示了RPropMinusTrainer類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: trainedLSTMNN2
def trainedLSTMNN2():
"""
n = RecurrentNetwork()
inp = LinearLayer(100, name = 'input')
hid = LSTMLayer(30, name='hidden')
out = LinearLayer(1, name='output')
#add modules
n.addOutputModule(out)
n.addInputModule(inp)
n.addModule(hid)
#add connections
n.addConnection(FullConnection(inp, hid))
n.addConnection(FullConnection(hid, out))
n.addRecurrentConnection(FullConnection(hid, hid))
n.sortModules()
"""
n = buildSimpleLSTMNetwork()
print "Network created"
d = load1OrderDataSet()
print "Data loaded"
t = RPropMinusTrainer(n, dataset=d, verbose=True)
t.trainUntilConvergence()
exportANN(n)
return n
示例2: train
def train(self, params):
self.net.reset()
ds = SequentialDataSet(self.nDimInput, self.nDimOutput)
trainer = RPropMinusTrainer(self.net, dataset=ds, verbose=False)
history = self.window(self.history, params)
resets = self.window(self.resets, params)
for i in xrange(params['prediction_nstep'], len(history)):
if not resets[i-1]:
ds.addSample(self.inputEncoder.encode(history[i-params['prediction_nstep']]),
self.outputEncoder.encode(history[i][0]))
if resets[i]:
ds.newSequence()
# print ds.getSample(0)
# print ds.getSample(1)
# print ds.getSample(1000)
# print " training data size", ds.getLength(), " len(history) ", len(history), " self.history ", len(self.history)
# print ds
if len(history) > 1:
trainer.trainEpochs(params['num_epochs'])
self.net.reset()
for i in xrange(len(history) - params['prediction_nstep']):
symbol = history[i]
output = self.net.activate(ds.getSample(i)[0])
if resets[i]:
self.net.reset()
示例3: main
def main():
generated_data = [0 for i in range(10000)]
rate, data = get_data_from_wav("../../data/natabhairavi_violin.wav")
data = data[1000:190000]
print("Got wav")
ds = SequentialDataSet(1, 1)
for sample, next_sample in zip(data, cycle(data[1:])):
ds.addSample(sample, next_sample)
net = buildNetwork(1, 5, 1,
hiddenclass=LSTMLayer, outputbias=False, recurrent=True)
trainer = RPropMinusTrainer(net, dataset=ds)
train_errors = [] # save errors for plotting later
EPOCHS_PER_CYCLE = 5
CYCLES = 10
EPOCHS = EPOCHS_PER_CYCLE * CYCLES
for i in xrange(CYCLES):
trainer.trainEpochs(EPOCHS_PER_CYCLE)
train_errors.append(trainer.testOnData())
epoch = (i+1) * EPOCHS_PER_CYCLE
print("\r epoch {}/{}".format(epoch, EPOCHS), end="")
stdout.flush()
# predict new values
old_sample = [100]
for i in xrange(500000):
new_sample = net.activate(old_sample)
old_sample = new_sample
generated_data[i] = new_sample[0]
print(new_sample)
wavfile.write("../../output/test.wav", rate, np.array(generated_data))
示例4: train
def train(self, params):
n = params['encoding_num']
net = buildNetwork(n, params['num_cells'], n,
hiddenclass=LSTMLayer,
bias=True,
outputbias=params['output_bias'],
recurrent=True)
net.reset()
ds = SequentialDataSet(n, n)
trainer = RPropMinusTrainer(net, dataset=ds)
history = self.window(self.history, params)
resets = self.window(self.resets, params)
for i in xrange(1, len(history)):
if not resets[i-1]:
ds.addSample(self.encoder.encode(history[i-1]),
self.encoder.encode(history[i]))
if resets[i]:
ds.newSequence()
if len(history) > 1:
trainer.trainEpochs(params['num_epochs'])
net.reset()
for i in xrange(len(history) - 1):
symbol = history[i]
output = self.net.activate(self.encoder.encode(symbol))
predictions = self.encoder.classify(output, num=params['num_predictions'])
if resets[i]:
net.reset()
return net
示例5: train
def train(self, params):
"""
Train LSTM network on buffered dataset history
After training, run LSTM on history[:-1] to get the state correct
:param params:
:return:
"""
if params['reset_every_training']:
n = params['encoding_num']
self.net = buildNetwork(n, params['num_cells'], n,
hiddenclass=LSTMLayer,
bias=True,
outputbias=params['output_bias'],
recurrent=True)
self.net.reset()
# prepare training dataset
ds = SequentialDataSet(params['encoding_num'], params['encoding_num'])
history = self.window(self.history, params)
resets = self.window(self.resets, params)
for i in xrange(1, len(history)):
if not resets[i - 1]:
ds.addSample(self.encoder.encode(history[i - 1]),
self.encoder.encode(history[i]))
if resets[i]:
ds.newSequence()
print "Train LSTM network on buffered dataset of length ", len(history)
if params['num_epochs'] > 1:
trainer = RPropMinusTrainer(self.net,
dataset=ds,
verbose=params['verbosity'] > 0)
if len(history) > 1:
trainer.trainEpochs(params['num_epochs'])
# run network on buffered dataset after training to get the state right
self.net.reset()
for i in xrange(len(history) - 1):
symbol = history[i]
output = self.net.activate(self.encoder.encode(symbol))
self.encoder.classify(output, num=params['num_predictions'])
if resets[i]:
self.net.reset()
else:
self.trainer.setData(ds)
self.trainer.train()
# run network on buffered dataset after training to get the state right
self.net.reset()
for i in xrange(len(history) - 1):
symbol = history[i]
output = self.net.activate(self.encoder.encode(symbol))
self.encoder.classify(output, num=params['num_predictions'])
if resets[i]:
self.net.reset()
示例6: trainLSTMnet
def trainLSTMnet(net, numTrainSequence, seedSeq=1):
np.random.seed(seedSeq)
for _ in xrange(numTrainSequence):
(ds, in_seq, out_seq) = getReberDS(maxLength)
print("train seq", _, sequenceToWord(in_seq))
trainer = RPropMinusTrainer(net, dataset=ds)
trainer.trainEpochs(rptPerSeq)
return net
示例7: train
def train(d, cycles=100, epochs_per_cycle=7):
ds = SequentialDataSet(1, 1)
net = buildNetwork(1, 5, 1, hiddenclass=LSTMLayer, outputbias=False, recurrent=False)
for sample, next_sample in zip(d, cycle(d[1:])):
ds.addSample(sample, next_sample)
trainer = RPropMinusTrainer(net, dataset=ds)
train_errors = [] # save errors for plotting later
for i in xrange(cycles):
trainer.trainEpochs(epochs_per_cycle)
train_errors.append(trainer.testOnData())
stdout.flush()
return net, train_errors
示例8: train
def train (ds, net):
# Train the network
trainer = RPropMinusTrainer(net, dataset=ds)
train_errors = [] # save errors for plotting later
EPOCHS_PER_CYCLE = 5
CYCLES = 100
EPOCHS = EPOCHS_PER_CYCLE * CYCLES
for i in xrange(CYCLES):
trainer.trainEpochs(EPOCHS_PER_CYCLE)
error = trainer.testOnData()
train_errors.append(error)
epoch = (i+1) * EPOCHS_PER_CYCLE
print("\r epoch {}/{}".format(epoch, EPOCHS))
stdout.flush()
# print("final error =", train_errors[-1])
return train_errors, EPOCHS, EPOCHS_PER_CYCLE
示例9: train
def train(self, params, verbose=False):
if params['reset_every_training']:
if verbose:
print 'create lstm network'
random.seed(6)
if params['output_encoding'] == None:
self.net = buildNetwork(self.nDimInput, params['num_cells'], self.nDimOutput,
hiddenclass=LSTMLayer, bias=True, outputbias=True, recurrent=True)
elif params['output_encoding'] == 'likelihood':
self.net = buildNetwork(self.nDimInput, params['num_cells'], self.nDimOutput,
hiddenclass=LSTMLayer, bias=True, outclass=SigmoidLayer, recurrent=True)
self.net.reset()
ds = SequentialDataSet(self.nDimInput, self.nDimOutput)
networkInput = self.window(self.networkInput, params)
targetPrediction = self.window(self.targetPrediction, params)
# prepare a training data-set using the history
for i in xrange(len(networkInput)):
ds.addSample(self.inputEncoder.encode(networkInput[i]),
self.outputEncoder.encode(targetPrediction[i]))
if params['num_epochs'] > 1:
trainer = RPropMinusTrainer(self.net, dataset=ds, verbose=verbose)
if verbose:
print " train LSTM on ", len(ds), " records for ", params['num_epochs'], " epochs "
if len(networkInput) > 1:
trainer.trainEpochs(params['num_epochs'])
else:
self.trainer.setData(ds)
self.trainer.train()
# run through the training dataset to get the lstm network state right
self.net.reset()
for i in xrange(len(networkInput)):
self.net.activate(ds.getSample(i)[0])
示例10: handle
def handle(self, *args, **options):
ticker = args[0]
print("****** STARTING PREDICTOR " + ticker + " ******* ")
prices = Price.objects.filter(symbol=ticker).order_by('-created_on').values_list('price',flat=True)
data = normalization(list(prices[0:NUM_MINUTES_BACK].reverse()))
data = [ int(x * MULT_FACTOR) for x in data]
print(data)
ds = SupervisedDataSet(5, 1)
try:
for i,val in enumerate(data):
DS.addSample((data[i], data[i+1], data[i+2], data[i+3], data[i+4]), (data[i+5],))
except Exception:
pass;
net = buildNetwork(5, 40, 1,
hiddenclass=LSTMLayer, outputbias=False, recurrent=True)
trainer = RPropMinusTrainer(net, dataset=ds)
train_errors = [] # save errors for plotting later
EPOCHS_PER_CYCLE = 5
CYCLES = 100
EPOCHS = EPOCHS_PER_CYCLE * CYCLES
for i in xrange(CYCLES):
trainer.trainEpochs(EPOCHS_PER_CYCLE)
train_errors.append(trainer.testOnData())
epoch = (i+1) * EPOCHS_PER_CYCLE
print("\r epoch {}/{}".format(epoch, EPOCHS), end="")
stdout.flush()
print()
print("final error =", train_errors[-1])
for sample, target in ds.getSequenceIterator(0):
show_pred_sample = net.activate(sample) / MULT_FACTOR
show_sample = sample / MULT_FACTOR
show_target = target / MULT_FACTOR
show_diff = show_pred_sample - show_target
show_diff_pct = 100 * show_diff / show_pred_sample
print("{} => {}, act {}. ({}%)".format(show_sample[0],round(show_pred_sample[0],3),show_target[0],int(round(show_diff_pct[0],0))))
示例11: say_hello_text
def say_hello_text(username = "World",text="You are good"):
object_data_new = pd.read_csv('/Users/ruiyun_zhou/Documents/cmpe-274/data/data.csv')
data_area_new = object_data_new[object_data_new.Area==username]
data_area_new_1=data_area_new[data_area_new.Disease== text]
data_list_new = data_area_new_1['Count'].values.tolist()
print data_list_new.__len__()
data_list=data_list_new
ds = SequentialDataSet(1,1)
isZero=0;
for sample,next_sample in zip(data_list,cycle(data_list[1:])):
ds.addSample(sample, next_sample)
if sample:
isZero=1
if(isZero==0):
return '[0, 0]'
net = buildNetwork(1,5,1,hiddenclass=LSTMLayer,outputbias=False,recurrent=True)
trainer = RPropMinusTrainer(net, dataset=ds)
train_errors = [] # save errors for plotting later
EPOCHS_PER_CYCLE = 5
CYCLES = 10
EPOCHS = EPOCHS_PER_CYCLE * CYCLES
for i in xrange(CYCLES):
print "Doing epoch %d" %i
trainer.trainEpochs(EPOCHS_PER_CYCLE)
train_errors.append(trainer.testOnData())
epoch = (i+1) * EPOCHS_PER_CYCLE
# return '<p>%d</p>\n' % (data_list_new.__len__())
# print("final error =", train_errors[-1])
# print "Value for last week is %4.1d" % abs(data_list[-1])
# print "Value for next week is %4.1d" % abs(net.activate(data_list[-1]))
# result = (abs(data_list[-1]))
result = (abs(net.activate(data_list[-1])))
result_1 = (abs(net.activate(result)))
return '[%d, %d]' % (result,result_1)
示例12: Train
def Train(self, dataset, error_observer, logger, dump_file):
gradientCheck(self.m_net)
net_dataset = SequenceClassificationDataSet(4, 2)
for record in dataset:
net_dataset.newSequence()
gl_raises = record.GetGlRises()
gl_min = record.GetNocturnalMinimum()
if DayFeatureExpert.IsHypoglycemia(record):
out_class = [1, 0]
else:
out_class = [0, 1]
for gl_raise in gl_raises:
net_dataset.addSample([gl_raise[0][0].total_seconds() / (24*3600), gl_raise[0][1] / 300, gl_raise[1][0].total_seconds() / (24*3600), gl_raise[1][1] / 300] , out_class)
train_dataset, test_dataset = net_dataset.splitWithProportion(0.8)
trainer = RPropMinusTrainer(self.m_net, dataset=train_dataset, momentum=0.8, learningrate=0.3, lrdecay=0.9, weightdecay=0.01, verbose=True)
validator = ModuleValidator()
train_error = []
test_error = []
for i in range(0, 80):
trainer.trainEpochs(1)
train_error.append(validator.MSE(self.m_net, train_dataset)) # here is validate func, think it may be parametrised by custom core function
test_error.append(validator.MSE(self.m_net, test_dataset))
print train_error
print test_error
error_observer(train_error, test_error)
gradientCheck(self.m_net)
dump_file = open(dump_file, 'wb')
pickle.dump(self.m_net, dump_file)
示例13: train
def train(data,name):
ds = SequentialDataSet(1, 1)
for sample, next_sample in zip(data, cycle(data[1:])):
ds.addSample(sample, next_sample)
net = buildNetwork(1, 200, 1, hiddenclass=LSTMLayer, outputbias=False, recurrent=True)
trainer = RPropMinusTrainer(net, dataset=ds)
train_errors = [] # save errors for plotting later
EPOCHS_PER_CYCLE = 5
CYCLES = 20
EPOCHS = EPOCHS_PER_CYCLE * CYCLES
store=[]
for i in xrange(CYCLES):
trainer.trainEpochs(EPOCHS_PER_CYCLE)
train_errors.append(trainer.testOnData())
epoch = (i+1) * EPOCHS_PER_CYCLE
print("\r epoch {}/{}".format(epoch, EPOCHS))
print tm.time()-atm
stdout.flush()
for sample, target in ds.getSequenceIterator(0):
store.append(net.activate(sample))
abcd=pd.DataFrame(store)
abcd.to_csv(pwd+"lstmdata/"+name+".csv",encoding='utf-8')
print "result printed to file"
示例14: RecurrentNetwork
layerCount = 10
net = RecurrentNetwork()
net.addInputModule(LinearLayer(10, name='in'))
for x in range(layerCount):
net.addModule(LSTMLayer(20, name='hidden' + str(x)))
net.addOutputModule(LinearLayer(10, name='out'))
net.addConnection(FullConnection(net['in'], net['hidden1'], name='cIn'))
for x in range(layerCount - 1):
net.addConnection(FullConnection(net[('hidden' + str(x))], net['hidden' + str(x + 1)], name=('c' + str(x + 1))))
net.addConnection(FullConnection(net['hidden' + str(layerCount - 1)], net['out'], name='cOut'))
net.sortModules()
from pybrain.supervised import RPropMinusTrainer
trainer = RPropMinusTrainer(net, dataset=ds)
epochcount = 0
while True:
startingnote = random.choice(range(1, 17))
startingnote2 = random.choice(range(1, 17))
startingduration = random.choice(range(1,17))
startingduration2 = random.choice(range(1, 17))
song = [[startingnote, startingduration, 1, 1, 0, startingnote2, startingduration2, 1, 1, 0]]
length = 50
while len(song) < length:
song.append(net.activate(song[-1]).tolist())
newsong = []
for x in song:
newx = []
newy = []
示例15: SequentialDataSet
net.addRecurrentConnection(FullConnection(h, h, inSliceTo = dim, outSliceTo = 4*dim, name = 'r1'))
net.addRecurrentConnection(IdentityConnection(h, h, inSliceFrom = dim, outSliceFrom = 4*dim, name = 'rstate'))
net.addConnection(FullConnection(h, o, inSliceTo = dim, name = 'f3'))
net.sortModules()
print net
ds = SequentialDataSet(15, 1)
ds.newSequence()
input = open(sys.argv[1], 'r')
for line in input.readlines():
row = np.array(line.split(','))
ds.addSample([float(x) for x in row[:15]], float(row[16]))
print ds
if len(sys.argv) > 2:
test = SequentialDataSet(15, 1)
test.newSequence()
input = open(sys.argv[2], 'r')
for line in input.readlines():
row = np.array(line.split(','))
test.addSample([float(x) for x in row[:15]], float(row[16]))
else:
test = ds
print test
net.reset()
trainer = RPropMinusTrainer( net, dataset=ds, verbose=True)
trainer.trainEpochs(1000)
evalRnnOnSeqDataset(net, test, verbose = True)