當前位置: 首頁>>代碼示例>>Python>>正文


Python DatasetSubset.size方法代碼示例

本文整理匯總了Python中opus_core.datasets.dataset.DatasetSubset.size方法的典型用法代碼示例。如果您正苦於以下問題:Python DatasetSubset.size方法的具體用法?Python DatasetSubset.size怎麽用?Python DatasetSubset.size使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在opus_core.datasets.dataset.DatasetSubset的用法示例。


在下文中一共展示了DatasetSubset.size方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: run

# 需要導入模塊: from opus_core.datasets.dataset import DatasetSubset [as 別名]
# 或者: from opus_core.datasets.dataset.DatasetSubset import size [as 別名]
 def run(self, year, job_set, control_totals, job_building_types, data_objects=None, resources=None):
     self._do_initialize_for_run(job_set, job_building_types, data_objects)
     large_area_ids = control_totals.get_attribute("large_area_id")
     jobs_large_area_ids = job_set.compute_variables("washtenaw.job.large_area_id")
     unique_large_areas = unique(large_area_ids)
     is_year = control_totals.get_attribute("year")==year
     all_jobs_index = arange(job_set.size())
     sectors = unique(control_totals.get_attribute("sector_id")[is_year])
     self._compute_sector_variables(sectors, job_set)
     for area in unique_large_areas:
         idx = where(logical_and(is_year, large_area_ids == area))[0]
         self.control_totals_for_this_year = DatasetSubset(control_totals, idx)
         jobs_index = where(jobs_large_area_ids == area)[0]
         jobs_for_this_area = DatasetSubset(job_set, jobs_index)
         logger.log_status("ETM for area %s (currently %s jobs)" % (area, jobs_for_this_area.size()))
         last_remove_idx = self.remove_jobs.size
         self._do_run_for_this_year(jobs_for_this_area)
         add_jobs_size = self.new_jobs[self.location_id_name].size-self.new_jobs["large_area_id"].size
         remove_jobs_size = self.remove_jobs.size-last_remove_idx
         logger.log_status("add %s, remove %s, total %s" % (add_jobs_size, remove_jobs_size,
                                                            jobs_for_this_area.size()+add_jobs_size-remove_jobs_size))
         self.new_jobs["large_area_id"] = concatenate((self.new_jobs["large_area_id"],
                 array(add_jobs_size*[area], dtype="int32")))
         # transform indices of removing jobs into indices of the whole dataset
         self.remove_jobs[last_remove_idx:self.remove_jobs.size] = all_jobs_index[jobs_index[self.remove_jobs[last_remove_idx:self.remove_jobs.size]]]
     self._update_job_set(job_set)
     idx_new_jobs = arange(job_set.size()-self.new_jobs["large_area_id"].size, job_set.size())
     jobs_large_area_ids = job_set.compute_variables("washtenaw.job.large_area_id")
     jobs_large_area_ids[idx_new_jobs] = self.new_jobs["large_area_id"]
     job_set.delete_one_attribute("large_area_id")
     job_set.add_attribute(jobs_large_area_ids, "large_area_id", metadata=AttributeType.PRIMARY)
     # return an index of new jobs
     return arange(job_set.size()-self.new_jobs["large_area_id"].size, job_set.size())  
開發者ID:psrc,項目名稱:urbansim,代碼行數:35,代碼來源:regional_employment_transition_model.py

示例2: run

# 需要導入模塊: from opus_core.datasets.dataset import DatasetSubset [as 別名]
# 或者: from opus_core.datasets.dataset.DatasetSubset import size [as 別名]
    def run(self, year, household_set, control_totals, characteristics, resources=None):
#        self.person_set = person_set
        self._do_initialize_for_run(household_set)
        control_totals.get_attribute("total_number_of_households") # to make sure they are loaded
        self.characteristics = characteristics
        self.all_categories = self.characteristics.get_attribute("characteristic")
        self.all_categories = array(map(lambda x: x.lower(), self.all_categories))
        self.scaled_characteristic_names = get_distinct_names(self.all_categories).tolist()
        self.marginal_characteristic_names = copy(control_totals.get_id_name())
        index_year = self.marginal_characteristic_names.index("year")
        self.marginal_characteristic_names.remove("year")
        self.marginal_characteristic_names.remove(self.subarea_id_name)
        region_ids = control_totals.get_attribute(self.subarea_id_name)
        households_region_ids = household_set.compute_one_variable_with_unknown_package(variable_name="%s" % (self.subarea_id_name), dataset_pool=self.dataset_pool)

        unique_regions = unique(region_ids)
        is_year = control_totals.get_attribute("year")==year
        all_households_index = arange(household_set.size())
        for area in unique_regions:
            idx = where(logical_and(is_year, region_ids == area))[0]
            self.control_totals_for_this_year = DatasetSubset(control_totals, idx)
            households_index = where(households_region_ids == area)[0]
            if households_index.size == 0:
                continue
            households_for_this_area = DatasetSubset(household_set, households_index)
            logger.log_status("HTM for area %s (currently %s households)" % (area, households_for_this_area.size()))
            last_remove_idx = self.remove_households.size
            last_new_hhs_idx = self.mapping_existing_hhs_to_new_hhs.size
            self._do_run_for_this_year(households_for_this_area)
            add_hhs_size = self.new_households[self.location_id_name].size-self.new_households[self.subarea_id_name].size+self.mapping_existing_hhs_to_new_hhs.size-last_new_hhs_idx
            remove_hhs_size = self.remove_households.size-last_remove_idx
            logger.log_status("add %s, remove %s, total %s" % (add_hhs_size, remove_hhs_size,
                                                               households_for_this_area.size()+add_hhs_size-remove_hhs_size
                                                               ))
            self.new_households[self.subarea_id_name] = concatenate((self.new_households[self.subarea_id_name],
                                            array((self.new_households[self.location_id_name].size-self.new_households[self.subarea_id_name].size)*[area], dtype="int32")))
            # transform indices of removing households into indices of the whole dataset
            self.remove_households[last_remove_idx:self.remove_households.size] = all_households_index[households_index[self.remove_households[last_remove_idx:self.remove_households.size]]]
            # do the same for households to be duplicated
            self.mapping_existing_hhs_to_new_hhs[last_new_hhs_idx:self.mapping_existing_hhs_to_new_hhs.size] = all_households_index[households_index[self.mapping_existing_hhs_to_new_hhs[last_new_hhs_idx:self.mapping_existing_hhs_to_new_hhs.size]]]
            
        self._update_household_set(household_set)
        idx_new_households = arange(household_set.size()-self.new_households[self.subarea_id_name].size, household_set.size())
        #household_region_ids = household_set.compute_variables("urbansim_parcel.household.%s" % self.subarea_id_name)
        #household_region_ids[idx_new_households] = self.new_households[self.subarea_id_name]
        region_ids = household_set.get_attribute(self.subarea_id_name).copy()
        household_set.delete_one_attribute(self.subarea_id_name)
        household_set.add_attribute(region_ids, self.subarea_id_name, metadata=AttributeType.PRIMARY)
        # return an index of new households
        return idx_new_households
開發者ID:psrc,項目名稱:urbansim,代碼行數:52,代碼來源:subarea_household_transition_model.py

示例3: _do_run

# 需要導入模塊: from opus_core.datasets.dataset import DatasetSubset [as 別名]
# 或者: from opus_core.datasets.dataset.DatasetSubset import size [as 別名]
    def _do_run(self, location_set, agent_set, agents_index, data_objects=None, resources=None):
        location_id_name = location_set.get_id_name()[0]
        jobsubset = DatasetSubset(agent_set, agents_index)
        if jobsubset.size() <= 0:
            return array([], dtype='int32')
        #unplace jobs
        agent_set.set_values_of_one_attribute(location_id_name, 
                                              resize(array([-1.0]), jobsubset.size()), agents_index)
        sector_ids = jobsubset.get_attribute("sector_id")
        sectors = unique(sector_ids)
        counts = ndimage_sum(ones((jobsubset.size(),)), labels=sector_ids.astype('int32'), index=sectors.astype('int32'))
        if sectors.size <=1 :
            counts = array([counts])
        variables = map(lambda x: "number_of_jobs_of_sector_"+str(int(x)), sectors)
        compute_variables = map(lambda var: self.variable_package + "." + 
            location_set.get_dataset_name()+ "." + var, variables)
        if data_objects is not None:
            self.dataset_pool.add_datasets_if_not_included(data_objects)
        self.dataset_pool.add_datasets_if_not_included({agent_set.get_dataset_name():agent_set})
        location_set.compute_variables(compute_variables, dataset_pool=self.dataset_pool)
        if self.filter is None:
            location_index = arange(location_set.size())
        else:
            filter_values = location_set.compute_variables([self.filter], dataset_pool=self.dataset_pool)
            location_index = where(filter_values > 0)[0]
        if location_index.size <= 0:
            logger.log_status("No locations available. Nothing to be done.")
            return array([])
        location_subset = DatasetSubset(location_set, location_index)
        i=0
        for sector in sectors:
            distr = location_subset.get_attribute(variables[i])
            if ma.allclose(distr.sum(), 0):
                uniform_prob = 1.0/distr.size
                distr = resize(array([uniform_prob], dtype='float64'), distr.size)
                logger.log_warning("Probabilities in scaling model for sector " + str(sector) + " sum to 0.0.  Substituting uniform distribution!")
#                random_sample = sample(location_set.get_attribute("grid_id"), k=int(counts[i]), \
#                                   probabilities = distr)
            distr = distr/float(distr.sum())
            random_sample = probsample_replace(location_subset.get_id_attribute(), size=int(counts[i]), 
                                       prob_array=distr)
            idx = where(sector_ids == sector)[0]
            #modify job locations
            agent_set.set_values_of_one_attribute(location_id_name, random_sample, agents_index[idx])
            i+=1
        return agent_set.get_attribute_by_index(location_id_name, agents_index)
開發者ID:psrc,項目名稱:urbansim,代碼行數:48,代碼來源:scaling_jobs_model.py

示例4: run

# 需要導入模塊: from opus_core.datasets.dataset import DatasetSubset [as 別名]
# 或者: from opus_core.datasets.dataset.DatasetSubset import size [as 別名]
    def run(self, chunk_specification, dataset, dataset_index=None, result_array_type=float32, **kwargs):
        """ 'chunk_specification' - determines number of chunks to use when computing over
                the dataset set.
            'dataset' - an object of class Dataset that is to be chunked.
            'dataset_index' - index of individuals in dataset to be chunked.
            'result_array_type' - type of the resulting array. Can be any numerical type of numpy array.
            **kwargs - keyword arguments.
            The method chunks dataset_index in the desired number of chunks (minimum is 1) and for each chunk it calls the method
            'run_chunk'. The order of the individuals entering the chunking is determined by the method 'get_agents_order'.
        """
        if dataset_index==None:
            dataset_index=arange(dataset.size())
        if not isinstance(dataset_index,ndarray):
            dataset_index=array(dataset_index)
        logger.log_status("Total number of individuals: %s" % dataset_index.size)
        result_array = zeros(dataset_index.size, dtype=result_array_type)

        if dataset_index.size <= 0:
            logger.log_status("Nothing to be done.")
            return result_array

        all_indexed_individuals = DatasetSubset(dataset, dataset_index)
        ordered_agent_indices = self.get_agents_order(all_indexed_individuals)# set order of individuals in chunks

        # TODO: Remove next six lines after we inherit chunk specification as a text string.
        if (chunk_specification is None):
            chunk_specification = {'nchunks':1}
        chunker = ChunkSpecification(chunk_specification)
        self.number_of_chunks = chunker.nchunks(dataset_index)
        chunksize = int(ceil(all_indexed_individuals.size()/float(self.number_of_chunks)))
        for ichunk in range(self.number_of_chunks):
            logger.start_block("%s chunk %d out of %d."
                               % (self.model_short_name, (ichunk+1), self.number_of_chunks))
            self.index_of_current_chunk = ichunk
            try:
                chunk_agent_indices = ordered_agent_indices[arange((ichunk*chunksize),
                                                                   min((ichunk+1)*chunksize,
                                                                       all_indexed_individuals.size()))]
                logger.log_status("Number of agents in this chunk: %s" % chunk_agent_indices.size)
                result_array[chunk_agent_indices] = self.run_chunk(dataset_index[chunk_agent_indices],
                                                                   dataset, **kwargs).astype(result_array_type)
            finally:
                logger.end_block()

        return result_array
開發者ID:christianurich,項目名稱:VIBe2UrbanSim,代碼行數:47,代碼來源:chunk_model.py

示例5: run

# 需要導入模塊: from opus_core.datasets.dataset import DatasetSubset [as 別名]
# 或者: from opus_core.datasets.dataset.DatasetSubset import size [as 別名]
    def run(self, year=None,
            dataset_pool=None,  **kwargs):
        """
        """
        if dataset_pool is None:
            dataset_pool = SessionConfiguration().get_dataset_pool()

        if year is None:
            year = SimulationState().get_current_time()
        
        this_year_index = where(self.scheduled_events.get_attribute('year')==year)[0]
        scheduled_events_for_this_year = DatasetSubset(self.scheduled_events, this_year_index)
        scheduled_events_for_this_year.load_dataset_if_not_loaded()
        column_names = list(set( self.scheduled_events.get_known_attribute_names() ) - set( [ 'year', 'action', 'attribute', 'amount', 'event_id', '_hidden_id_'] ))
        column_names.sort()
#        column_values = dict([ (name, scheduled_events_for_this_year.get_attribute(name)) for name in column_names])
        
        for index in range(scheduled_events_for_this_year.size()):
            indicator = ones( self.dataset.size(), dtype='bool' )
            event_attr = {}
            for attribute in column_names:
                if attribute in self.dataset.get_known_attribute_names():
                    dataset_attribute = self.dataset.get_attribute(attribute)
                else:
                    ## this is done inside the loop because some action may delete computed attributes, such as dataset.add_elements()
                    try:
                        dataset_attribute = self.dataset.compute_one_variable_with_unknown_package(attribute, dataset_pool=dataset_pool)
                    except:
                        raise ValueError, "attribute %s used in scheduled events dataset can not be found in dataset %s" % (attribute, self.dataset.get_dataset_name())
                
#                if attribute in column_names: 
                aval = scheduled_events_for_this_year.get_attribute(attribute)[index]
                if aval == -1:
                    continue    # ignore if column value is -1
                else:
                    indicator *= dataset_attribute == aval
                    event_attr.update({attribute:aval})
            
            #agents in dataset satisfying all conditions are identified by indicator
            legit_index = where(indicator)[0]
            
            this_event = scheduled_events_for_this_year.get_data_element(index)
            if not hasattr(this_event, 'attribute'):
                action_attr_name = ''
            else:
                action_attr_name = this_event.attribute
            action_function = getattr(self, '_' + this_event.action.strip().lower())
            action_function( amount=this_event.amount,
                             attribute=action_attr_name,
                             dataset=self.dataset, 
                             index=legit_index,
                             data_dict=event_attr )
            
            self.post_run(self.dataset, legit_index, **kwargs)

        return self.dataset
開發者ID:christianurich,項目名稱:VIBe2UrbanSim,代碼行數:58,代碼來源:scheduled_events_model.py

示例6: run

# 需要導入模塊: from opus_core.datasets.dataset import DatasetSubset [as 別名]
# 或者: from opus_core.datasets.dataset.DatasetSubset import size [as 別名]
    def run(self, n=500, 
            realestate_dataset_name = 'building',
            current_year=None,
            **kwargs):

        target_vacancy = self.dataset_pool.get_dataset('target_vacancy')

        if current_year is None:
            year = SimulationState().get_current_time()
        else:
            year = current_year
        self.current_year = year
        this_year_index = where(target_vacancy['year']==year)[0]
        target_vacancy_for_this_year = DatasetSubset(target_vacancy, this_year_index)
        if target_vacancy_for_this_year.size() == 0:
            raise IOError, 'No target vacancy defined for year %s.' % year
        self.all_btypes_size = target_vacancy_for_this_year.size()
        return DevelopmentProjectProposalSamplingModelWithMinimum.run(self, n=n, realestate_dataset_name=realestate_dataset_name,
                                                                      current_year=current_year, **kwargs)
開發者ID:,項目名稱:,代碼行數:21,代碼來源:

示例7: _do_run

# 需要導入模塊: from opus_core.datasets.dataset import DatasetSubset [as 別名]
# 或者: from opus_core.datasets.dataset.DatasetSubset import size [as 別名]
 def _do_run(self, location_set, agent_set, agents_index, resources=None):
     location_id_name = location_set.get_id_name()[0]
     asubset = DatasetSubset(agent_set, agents_index)
     if asubset.size() <= 0:
         return array([], dtype='int32')
     #unplace agents
     agent_set.modify_attribute(location_id_name, 
                             resize(array([-1]), asubset.size()), agents_index)
     if self.filter is None:
         location_index = arange(location_set.size())
     else:
         filter_values = location_set.compute_variables([self.filter], dataset_pool=self.dataset_pool)
         location_index = where(filter_values > 0)[0]
     if location_index.size <= 0:
         logger.log_status("No locations available. Nothing to be done.")
         return array([])
     
     location_subset = DatasetSubset(location_set, location_index)
     if self.consider_capacity:
         location_set.compute_variables([self.capacity_attribute], 
                                        dataset_pool=self.dataset_pool)
         weights = location_subset[self.capacity_attribute]
         if self.number_of_agents_attribute is not None:
             location_set.compute_variables([self.number_of_agents_attribute], 
                                        dataset_pool=self.dataset_pool)
             weights = clip(weights - location_subset[self.number_of_agents_attribute],
                                        0, location_subset[self.capacity_attribute])
     else:
         weights = ones(location_subset.size())
     
     if weights.sum() <=0:
         logger.log_status("Locations' capacity sums to zero. Nothing to be done.")
         return array([])        
     distr = weights/float(weights.sum())
     random_sample = probsample_replace(location_subset.get_id_attribute(), size=asubset.size(), 
                                    prob_array=distr)
     agent_set.modify_attribute(location_id_name, random_sample, agents_index)
     return agent_set.get_attribute_by_index(location_id_name, agents_index)
開發者ID:psrc,項目名稱:urbansim,代碼行數:40,代碼來源:capacity_location_model.py

示例8: run

# 需要導入模塊: from opus_core.datasets.dataset import DatasetSubset [as 別名]
# 或者: from opus_core.datasets.dataset.DatasetSubset import size [as 別名]
    def run(self, agent_set, **kwargs):

        large_areas = agent_set.get_attribute(self.large_area_id_name)
        valid_large_area = where(large_areas > 0)[0]
        if valid_large_area.size > 0:
            unique_large_areas = unique(large_areas[valid_large_area])
            cond_array = zeros(agent_set.size(), dtype="bool8")
            cond_array[valid_large_area] = True
            result = array([], dtype="int32")
            for area in unique_large_areas:
                new_index = where(logical_and(cond_array, large_areas == area))[0]
                agent_subset =  DatasetSubset(agent_set, new_index)
                logger.log_status("ARM for area %s (%s agents)" % (area, agent_subset.size()))
                this_result = AgentRelocationModel.run(self, agent_subset, **kwargs)
                result = concatenate((result, new_index[this_result]))
        no_large_area = where(large_areas <= 0)[0]
        result = concatenate((result, no_large_area))
        return result
開發者ID:christianurich,項目名稱:VIBe2UrbanSim,代碼行數:20,代碼來源:regional_agent_relocation_model.py

示例9: run

# 需要導入模塊: from opus_core.datasets.dataset import DatasetSubset [as 別名]
# 或者: from opus_core.datasets.dataset.DatasetSubset import size [as 別名]
    def run(
        self,
        realestate_dataset,
        year=None,
        occupied_spaces_variable="occupied_units",
        total_spaces_variable="total_units",
        target_attribute_name="target_vacancy_rate",
        sample_from_dataset=None,
        sample_filter="",
        reset_attribute_value={},
        year_built="year_built",
        dataset_pool=None,
        append_to_realestate_dataset=False,
        table_name="development_projects",
        dataset_name="development_project",
        id_name="development_project_id",
        **kwargs
    ):
        """         
        sample_filter attribute/variable indicates which records in the dataset are eligible in the sampling for removal or cloning
        append_to_realestate_dataset - whether to append the new dataset to realestate_dataset
        """

        if self.target_vancy_dataset is None:
            raise RuntimeError, "target_vacancy_rate dataset is unspecified."

        if not sample_from_dataset:
            sample_from_dataset = realestate_dataset

        # if dataset_pool is None:
        #    dataset_pool = SessionConfiguration().get_dataset_pool()
        if year is None:
            year = SimulationState().get_current_time()
        this_year_index = where(self.target_vancy_dataset.get_attribute("year") == year)[0]
        target_vacancy_for_this_year = DatasetSubset(self.target_vancy_dataset, this_year_index)

        column_names = list(
            set(self.target_vancy_dataset.get_known_attribute_names())
            - set([target_attribute_name, occupied_spaces_variable, total_spaces_variable, "year", "_hidden_id_"])
        )
        column_names.sort(reverse=True)
        column_values = dict(
            [
                (name, target_vacancy_for_this_year.get_attribute(name))
                for name in column_names + [target_attribute_name]
            ]
        )

        independent_variables = list(set([re.sub("_max$", "", re.sub("_min$", "", col)) for col in column_names]))
        dataset_known_attributes = realestate_dataset.get_known_attribute_names()
        sample_dataset_known_attributes = sample_from_dataset.get_known_attribute_names()
        for variable in independent_variables:
            if variable not in dataset_known_attributes:
                realestate_dataset.compute_one_variable_with_unknown_package(variable, dataset_pool=dataset_pool)
            if variable not in sample_dataset_known_attributes:
                sample_from_dataset.compute_one_variable_with_unknown_package(variable, dataset_pool=dataset_pool)

        dataset_known_attributes = realestate_dataset.get_known_attribute_names()  # update after compute
        if sample_filter:
            short_name = VariableName(sample_filter).get_alias()
            if short_name not in dataset_known_attributes:
                filter_indicator = sample_from_dataset.compute_variables(sample_filter, dataset_pool=dataset_pool)
            else:
                filter_indicator = sample_from_dataset.get_attribute(short_name)
        else:
            filter_indicator = 1

        sampled_index = array([], dtype=int32)

        # log header
        if PrettyTable is not None:
            status_log = PrettyTable()
            status_log.set_field_names(column_names + ["actual", "target", "expected", "difference", "action"])
        else:
            logger.log_status("\t".join(column_names + ["actual", "target", "expected", "difference", "action"]))
        error_log = ""
        for index in range(target_vacancy_for_this_year.size()):
            this_sampled_index = array([], dtype=int32)
            indicator = ones(realestate_dataset.size(), dtype="bool")
            sample_indicator = ones(sample_from_dataset.size(), dtype="bool")
            criterion = {}  # for logging
            for attribute in independent_variables:
                if attribute in dataset_known_attributes:
                    dataset_attribute = realestate_dataset.get_attribute(attribute)
                    sample_attribute = sample_from_dataset.get_attribute(attribute)
                else:
                    raise ValueError, "attribute %s used in target vacancy dataset can not be found in dataset %s" % (
                        attribute,
                        realestate_dataset.get_dataset_name(),
                    )

                if attribute + "_min" in column_names:
                    amin = target_vacancy_for_this_year.get_attribute(attribute + "_min")[index]
                    criterion.update({attribute + "_min": amin})
                    if amin != -1:
                        indicator *= dataset_attribute >= amin
                        sample_indicator *= sample_attribute >= amin
                if attribute + "_max" in column_names:
                    amax = target_vacancy_for_this_year.get_attribute(attribute + "_max")[index]
                    criterion.update({attribute + "_max": amax})
#.........這裏部分代碼省略.........
開發者ID:psrc,項目名稱:urbansim,代碼行數:103,代碼來源:real_estate_transition_model.py

示例10: run

# 需要導入模塊: from opus_core.datasets.dataset import DatasetSubset [as 別名]
# 或者: from opus_core.datasets.dataset.DatasetSubset import size [as 別名]
    def run(self, in_storage, out_storage=None, business_dsname="business", zone_dsname=None):
        dataset_pool = DatasetPool(storage=in_storage, package_order=['psrc_parcel', 'urbansim_parcel', 'urbansim', 'opus_core'] )
        seed(1)
        allbusinesses = dataset_pool.get_dataset(business_dsname)
        parcels = dataset_pool.get_dataset('parcel')
        buildings = dataset_pool.get_dataset('building')
        parcels.compute_variables(["urbansim_parcel.parcel.residential_units", "number_of_buildings = parcel.number_of_agents(building)", 
                                   "non_residential_sqft = (parcel.aggregate(building.non_residential_sqft)).astype(int32)",
                                   "number_of_res_buildings = parcel.aggregate(urbansim_parcel.building.is_residential)",
                                   "number_of_nonres_buildings = parcel.aggregate(urbansim_parcel.building.is_non_residential)",
                                   "number_of_mixed_use_buildings = parcel.aggregate(urbansim_parcel.building.is_generic_building_type_6)"
                                   ], 
                                  dataset_pool=dataset_pool)
        restypes = [12, 4, 19, 11, 34, 10, 33]
        reslutypes = [13,14,15,24]
        is_valid_business = ones(allbusinesses.size(), dtype='bool8')
        parcels_not_matched = logical_and(in1d(allbusinesses["parcel_id"], parcels.get_id_attribute(), invert=True), allbusinesses["parcel_id"] > 0)
        if(parcels_not_matched.sum() > 0):
            is_valid_business[where(parcels_not_matched)] = False
            logger.log_warning(message="No parcel exists for %s businesses (%s jobs)" % (parcels_not_matched.sum(), 
                                                                                         allbusinesses[self.number_of_jobs_attr][where(parcels_not_matched)].sum()))
        zero_parcel = allbusinesses["parcel_id"]<=0
        if zero_parcel.sum() > 0:
            is_valid_business[where(zero_parcel)] = False
            logger.log_warning(message="%s businesses (%s jobs) located on zero parcel_id" % (zero_parcel.sum(), 
                                                                                         allbusinesses[self.number_of_jobs_attr][where(zero_parcel)].sum()))            
            
        zero_size = logical_and(is_valid_business, allbusinesses[self.number_of_jobs_attr].round() == 0)
        if(sum(zero_size) > 0):
            is_valid_business[where(zero_size)] = False
            logger.log_warning(message="%s businesses are of size 0." % sum(zero_size))
        
        businesses = DatasetSubset(allbusinesses, index=where(is_valid_business)[0])
        
        parcels.add_attribute(name="number_of_workplaces", data=parcels.sum_dataset_over_ids(businesses, constant=1))
        
        has_single_res_buildings = logical_and(parcels["number_of_buildings"] == 1, parcels["number_of_res_buildings"] == 1) # 1 (1 residential)
        parcels.add_attribute(data=has_single_res_buildings.astype("int32"), name="buildings_code")
        has_mult_res_buildings = logical_and(parcels["number_of_buildings"] > 1,  parcels["number_of_nonres_buildings"] == 0) # 2 (mult residential)
        parcels.modify_attribute("buildings_code", data=2*ones(has_mult_res_buildings.sum()), index=where(has_mult_res_buildings)) 
        has_single_nonres_buildings = logical_and(logical_and(parcels["number_of_buildings"] == 1, parcels["number_of_nonres_buildings"] == 1), parcels["number_of_mixed_use_buildings"] == 0) # 3 (1 non-res)
        parcels.modify_attribute("buildings_code", data=3*ones(has_single_nonres_buildings.sum()), index=where(has_single_nonres_buildings)) 
        has_mult_nonres_buildings = logical_and(logical_and(parcels["number_of_buildings"] > 1, parcels["number_of_res_buildings"] == 0), parcels["number_of_mixed_use_buildings"] == 0) # 4 (mult non-res)
        parcels.modify_attribute("buildings_code", data=4*ones(has_mult_nonres_buildings.sum()), index=where(has_mult_nonres_buildings))
        has_single_mixed_buildings = logical_and(parcels["number_of_buildings"] == 1, parcels["number_of_mixed_use_buildings"] == 1) # 5 (1 mixed-use)
        parcels.modify_attribute("buildings_code", data=5*ones(has_single_mixed_buildings.sum()), index=where(has_single_mixed_buildings))
        has_mult_mixed_buildings = logical_and(parcels["number_of_buildings"] > 1, 
                                               logical_or(logical_and(parcels["number_of_res_buildings"] > 0, parcels["number_of_nonres_buildings"] > 0), 
                                                          logical_or(parcels["number_of_mixed_use_buildings"] > 1, 
                                                                     logical_and(parcels["number_of_res_buildings"] == 0, 
                                                                                 parcels["number_of_mixed_use_buildings"] > 0)))) # 6
        parcels.modify_attribute("buildings_code", data=6*ones(has_mult_mixed_buildings.sum()), index=where(has_mult_mixed_buildings))
        has_no_building_res_lutype = logical_and(parcels["number_of_buildings"] == 0, in1d(parcels["land_use_type_id"], reslutypes)) # 7 (vacant with res LU type)
        parcels.modify_attribute("buildings_code", data=7*ones(has_no_building_res_lutype.sum()), index=where(has_no_building_res_lutype)) 
        has_no_building_nonres_lutype = logical_and(parcels["number_of_buildings"] == 0, in1d(parcels["land_use_type_id"], reslutypes)==0) # 8 (vacant with non-res LU type)
        parcels.modify_attribute("buildings_code", data=8*ones(has_no_building_nonres_lutype.sum()), index=where(has_no_building_nonres_lutype))
        
        business_sizes = businesses[self.number_of_jobs_attr].round().astype("int32") 
        business_location = {}
        business_location1wrkpl = zeros(businesses.size(), dtype="int32")
        business_location1wrkplres = zeros(businesses.size(), dtype="int32")
        business_ids = businesses.get_id_attribute()
        # sample one building for cases when sampling is required.
        for ibusid in range(businesses.size()):
            idx = where(buildings['parcel_id'] == businesses['parcel_id'][ibusid])[0]
            bldgids = buildings['building_id'][idx]
            business_location[business_ids[ibusid]] = bldgids
            if bldgids.size == 1:
                business_location1wrkpl[ibusid] = bldgids[0]
            elif bldgids.size > 1:
                business_location1wrkpl[ibusid] = bldgids[sample_noreplace(arange(bldgids.size), 1)]
                if buildings['residential_units'][idx].sum() > 0:
                    # Residential buildings are sampled with probabilities proportional to residential units
                    business_location1wrkplres[ibusid] = bldgids[probsample_noreplace(arange(bldgids.size), 1, prob_array=buildings['residential_units'][idx])]
                else:
                    business_location1wrkplres[ibusid] = business_location1wrkpl[ibusid]
        
        home_based = zeros(business_sizes.sum(), dtype="bool8")
        job_building_id = zeros(business_sizes.sum(), dtype="int32")
        job_array_labels = business_ids.repeat(business_sizes)
        job_assignment_case = zeros(business_sizes.sum(), dtype="int32")
        processed_bindicator = zeros(businesses.size(), dtype="bool8")
        business_codes = parcels.get_attribute_by_id("buildings_code", businesses["parcel_id"])
        business_nworkplaces = parcels.get_attribute_by_id("number_of_workplaces", businesses["parcel_id"])
        logger.log_status("Total number of jobs: %s" % home_based.size)
        
        # 1. 1-2 worker business in 1 residential building
        idx_sngl_wrk_1bld_fit = where(logical_and(business_sizes < 3, business_codes == 1))[0]
        jidx = in1d(job_array_labels, business_ids[idx_sngl_wrk_1bld_fit])
        home_based[jidx] = True
        job_building_id[jidx] = business_location1wrkpl[idx_sngl_wrk_1bld_fit].repeat(business_sizes[idx_sngl_wrk_1bld_fit])
        job_assignment_case[jidx] = 1
        processed_bindicator[idx_sngl_wrk_1bld_fit] = True
        logger.log_status("1. %s jobs (%s businesses) set as home-based due to 1-2 worker x 1 residential building fit." % (
            business_sizes[idx_sngl_wrk_1bld_fit].sum(), idx_sngl_wrk_1bld_fit.size))
        
        # 2. 1-2 worker business in multiple residential buildings
        idx_sngl_wrk_multbld_fit = where(logical_and(logical_and(processed_bindicator==0, business_sizes < 3), business_codes == 2))[0]
        jidx = in1d(job_array_labels, business_ids[idx_sngl_wrk_multbld_fit])
        home_based[jidx] = True
#.........這裏部分代碼省略.........
開發者ID:bhylee,項目名稱:swp_homework,代碼行數:103,代碼來源:create_jobs14_from_qcew.py

示例11: run

# 需要導入模塊: from opus_core.datasets.dataset import DatasetSubset [as 別名]
# 或者: from opus_core.datasets.dataset.DatasetSubset import size [as 別名]
 def run(self, dataset, outcome_attribute, weight_attribute, 
              control_totals, current_year, control_total_attribute=None, 
              year_attribute='year', capacity_attribute=None, add_quantity=False, dataset_pool=None):
     """'dataset' is a Dataset for which a quantity 'outcome_attribute' is created. The total amount of the quantity is 
     given by the attribute 'control_total_attribute' of the 'control_totals' Dataset. If it is not given, it is assumed 
     to have the same name as 'outcome_attribute'. The 'weight_attribute' of 'dataset' determines the allocation weights.
     The 'control_totals' Dataset contains an attribute 'year' (or alternatively, an attribute given by the 'year_attribute' argument)
     and optionally other attributes that must be known to the 'dataset' (such as a geography). For each row of the control_totals dataset
     for which year matches the 'current_year', the total amount is distributed among the corresponding members of 'dataset' according to weights.
     If a 'capacity_attribute' is given (attribute of 'dataset'), the algorithm removes any allocations that exceeds the capacity and 
     redistributes it among remaining members. The resulting values are appended to 'dataset' as 'outcome_attribute' (as primary attribute).
     If add_quantity is True and the 'outcome_attribute' exists in dataset, the resulting values are added to the current values of 
     'outcome_attribute'.
     """
     ct_attr = control_totals.get_known_attribute_names()
     if year_attribute not in ct_attr:
         raise StandardError, "Year attribute '%s' must be a known attribute of the control totals dataset." % year_attribute
     ct_attr.remove(year_attribute)
     if control_total_attribute is None:
         control_total_attribute = outcome_attribute
     if control_total_attribute not in ct_attr:
         raise StandardError, "Attribute '%s' must be a known attribute of the control totals dataset." % control_total_attribute
     ct_attr.remove(control_total_attribute)
     if control_totals._is_hidden_id():
         ct_attr.remove(control_totals.id_name()[0])
         
     # compute weights and other attributes necessary for allocation
     attrs_to_compute = [weight_attribute] + ct_attr
     if capacity_attribute is not None:
         attrs_to_compute.append(capacity_attribute)
     for attr in attrs_to_compute:
         try:
             dataset.compute_variables(attr, dataset_pool=dataset_pool)
         except:
             dataset.compute_one_variable_with_unknown_package(attr, dataset_pool=dataset_pool)
     
     # create subset of control totals for the current year
     year_index = where(control_totals.get_attribute(year_attribute) == current_year)[0]
     if year_index.size <= 0:
         logger.log_warning("No control total for year %s" % current_year)
         return None
     control_totals_for_this_year = DatasetSubset(control_totals, year_index)
     
     # check capacity
     if capacity_attribute is not None:
         if dataset.get_attribute(capacity_attribute).sum() < control_totals_for_this_year.get_attribute(control_total_attribute).sum():
             logger.log_warning("Capacity (%s) is smaller than the amount to allocate (%s)." % (dataset.get_attribute(capacity_attribute).sum(), 
                                                                                               control_totals_for_this_year.get_attribute(control_total_attribute).sum()))
         C = dataset.get_attribute(capacity_attribute).astype('int32')
         
     all_weights = dataset.get_attribute(weight_attribute)
     outcome = zeros(dataset.size(), dtype='int32')
     for ct_row in range(control_totals_for_this_year.size()):
         is_considered = ones(dataset.size(), dtype='bool8')
         for characteristics in ct_attr:
             is_considered = logical_and(is_considered, dataset.get_attribute(characteristics) == control_totals_for_this_year.get_attribute(characteristics)[ct_row])
         T = control_totals_for_this_year.get_attribute(control_total_attribute)[ct_row]
         it = 1
         while True:
             is_considered_idx = where(is_considered)[0]
             weights = all_weights[is_considered_idx]
             weights_sum = float(weights.sum())
             outcome[is_considered_idx] = round_(outcome[is_considered_idx] + T * (weights/weights_sum)).astype('int32')
             if capacity_attribute is None:
                 break
             diff = outcome[is_considered_idx] - C[is_considered_idx]
             outcome[is_considered_idx] = clip(outcome[is_considered_idx], 0, C[is_considered_idx])
             if it == 1 and C[is_considered_idx].sum() < T:
                 logger.log_warning("Control total %s cannot be met due to a capacity restriction of %s" % (T, C[is_considered_idx].sum()))
             T = where(diff < 0, 0, diff).sum()
             if T <= 0:
                 break
             is_considered = logical_and(is_considered, outcome < C)
             it += 1
     if add_quantity and (outcome_attribute in dataset.get_known_attribute_names()):
         dataset.modify_attribute(name=outcome_attribute, data=outcome+dataset.get_attribute(outcome_attribute))
         logger.log_status('New values added to the attribute %s of dataset %s.' % (outcome_attribute, dataset.get_dataset_name()))
     else:
         dataset.add_primary_attribute(name=outcome_attribute, data=outcome)
         logger.log_status('New values stored into attribute %s of dataset %s.' % (outcome_attribute, dataset.get_dataset_name()))
     dataset.flush_attribute(outcome_attribute)
     return outcome
開發者ID:janowicz,項目名稱:urbansim_drcog,代碼行數:84,代碼來源:allocation_model.py

示例12: run

# 需要導入模塊: from opus_core.datasets.dataset import DatasetSubset [as 別名]
# 或者: from opus_core.datasets.dataset.DatasetSubset import size [as 別名]
    def run(self, n=500, run_config=None, current_year=None, debuglevel=0):
        """
        n - sample n proposals at a time, evaluate them one by one
        """
        self.demolished_buildings = array([], dtype='int32')  #id of buildings to be demolished
        if current_year is None:
            current_year = SimulationState().get_current_time()
        if not self.positive_proposals:
            logger.log_status("Proposal Set size <= 0, no proposals to consider, skipping DPPSM.")
            return (self.proposal_set, self.demolished_buildings) 
        self.proposal_component_set.compute_variables([
            'urbansim_parcel.development_project_proposal_component.units_proposed',
            'urbansim_parcel.development_project_proposal_component.is_residential'],
                                        dataset_pool=self.dataset_pool)
        self.proposal_set.compute_variables([
            'urbansim_parcel.development_project_proposal.number_of_components',
            'zone_id=development_project_proposal.disaggregate(parcel.zone_id)',
            #'occurence_frequency = development_project_proposal.disaggregate(development_template.sample_size)'
            ],
                                        dataset_pool=self.dataset_pool)
        buildings = self.dataset_pool.get_dataset("building")
        buildings.compute_variables([
                                "occupied_units_for_jobs = urbansim_parcel.building.number_of_non_home_based_jobs",
                                "units_for_jobs = urbansim_parcel.building.total_non_home_based_job_space",
                                "occupied_residential_units = urbansim_parcel.building.number_of_households",
#                                "urbansim_parcel.building.existing_units",
                                "urbansim_parcel.building.is_residential"
                                    ],
                                    dataset_pool=self.dataset_pool)

        ## define unit_name by whether a building is residential or not (with is_residential attribute)
        ## if it is non-residential (0), count units by number of job spaces (units_for_jobs)
        ## if it is residential (1), count units by residenital units
        self.unit_name = array(["units_for_jobs", "residential_units"])
                
        target_vacancy = self.dataset_pool.get_dataset('target_vacancy')
        target_vacancy.compute_variables(['is_residential = target_vacancy.disaggregate(building_type.is_residential)'],
                                         dataset_pool=self.dataset_pool)
        # This try-except block checks to see if the object has a subarea_id_name,
        # if it does, it calculates the vacancy rates by subarea_id_name
        try:
            # Check for subarea_id_name in target_vacancies dataset
            # if it is present, vacancy rates are specified by subarea_id_name
            # if it is not, vacancy rates are specified region wide
            target_vacancy.load_dataset()
            if self.subarea_id_name in target_vacancy.get_attribute_names():
                current_target_vacancy_this_year = DatasetSubset(target_vacancy, index=where(target_vacancy.get_attribute("year")==current_year)[0])
                current_target_vacancy = DatasetSubset(current_target_vacancy_this_year, index=where(current_target_vacancy_this_year.get_attribute(self.subarea_id_name)==self.area_id)[0])
            else:
                current_target_vacancy = DatasetSubset(target_vacancy, index=where(target_vacancy.get_attribute("year")==current_year)[0])
        except AttributeError:
            # vacancy rates are specified region wide:
            current_target_vacancy = DatasetSubset(target_vacancy, index=where(target_vacancy.get_attribute("year")==current_year)[0])

        if current_target_vacancy.size() == 0:
            raise IOError, 'No target vacancy defined for year %s.' % current_year
        
        self.existing_units = {}   #total existing units by land_use type
        self.occupied_units = {}   #total occupied units by land_use type
        self.proposed_units = {}   #total proposed units by land_use type
        self.demolished_units = {} #total (to be) demolished units by land_use type

        components_building_type_ids = self.proposal_component_set.get_attribute("building_type_id").astype("int32")
        proposal_ids = self.proposal_set.get_id_attribute()
        proposal_ids_in_component_set = self.proposal_component_set.get_attribute("proposal_id")
        all_units_proposed = self.proposal_component_set.get_attribute("units_proposed")
        number_of_components_in_proposals = self.proposal_set.get_attribute("number_of_components")
        
        self.accepting_proposals = zeros(current_target_vacancy.get_attribute("building_type_id").max()+1, dtype='bool8')  #whether accepting new proposals, for each building type
        self.accepted_proposals = [] # index of accepted proposals

        self.target_vacancies = {}
        tv_building_types = current_target_vacancy.get_attribute("building_type_id")
        tv_rate = current_target_vacancy.get_attribute("target_vacancy_rate")
        for itype in range(tv_building_types.size):
            self.target_vacancies[tv_building_types[itype]] = tv_rate[itype]
            
        self.check_vacancy_rates(current_target_vacancy)  #initialize self.accepting_proposal based on current vacancy rate

        sqft_per_job = self.dataset_pool.get_dataset("building_sqft_per_job")
        zones_of_proposals = self.proposal_set.get_attribute("zone_id")
        self.building_sqft_per_job_table = sqft_per_job.get_building_sqft_as_table(zones_of_proposals.max(), 
                                                                                   tv_building_types.max())
        # consider only those proposals that have all components of accepted type and sum of proposed units > 0
        is_accepted_type = self.accepting_proposals[components_building_type_ids]
        sum_is_accepted_type_over_proposals = array(ndimage.sum(is_accepted_type, labels = proposal_ids_in_component_set, 
                                                          index = proposal_ids))
        sum_of_units_proposed = array(ndimage.sum(all_units_proposed, labels = proposal_ids_in_component_set, 
                                                          index = proposal_ids))
        is_proposal_eligible = logical_and(sum_is_accepted_type_over_proposals == number_of_components_in_proposals,
                                           sum_of_units_proposed > 0)

        is_proposal_eligible = logical_and(is_proposal_eligible,
                                           self.proposal_set.get_attribute("start_year")==current_year )
        ## handle planned proposals: all proposals with status_id == is_planned 
        ## and start_year == current_year are accepted
        planned_proposal_indexes = where(logical_and(
                                                  self.proposal_set.get_attribute("status_id") == self.proposal_set.id_planned, 
                                                  self.proposal_set.get_attribute("start_year") == current_year ) 
                                        )[0] 
#.........這裏部分代碼省略.........
開發者ID:christianurich,項目名稱:VIBe2UrbanSim,代碼行數:103,代碼來源:development_project_proposal_sampling_model.py

示例13: DevelopmentProjectTransitionModel

# 需要導入模塊: from opus_core.datasets.dataset import DatasetSubset [as 別名]
# 或者: from opus_core.datasets.dataset.DatasetSubset import size [as 別名]
class DevelopmentProjectTransitionModel( Model ):
    """
    Creates development projects. Each development project is for a single type
    of development, e.g. 'industrial' or 'commercial'.  This model creates
    enough development projects to match the desired vacancy rates, as defined in the target_vacancies
    table.  It does not place any projects in locations; that is the job of the development project
    location choice models.  The distribution of project sizes (amount of space, value of space) is
    determined by sampling from the projects in the development_event_history table.
    """
    model_name = "Development Project Transition Model"
    
    def __init__( self, debuglevel=0 ):
        self.debug = DebugPrinter( debuglevel )

    def pre_check( self, location_set, vacancy_table, types ):
        for ptype in types:
            self.check_for_space( location_set.get_attribute(self.variable_for_total_units[ptype]))
        self.check_target_vacancy_is_not_100_percent( vacancy_table.get_attribute( "target_total_vacancy"))

    def check_for_space( self, values ):
        """Check that this array of values sums to something > 0."""
        self.do_check( "x > 0", array( [values.sum()] ) )

    def check_target_vacancy_is_not_100_percent( self, value ):
        """Check that the target vacancy rate is not 100% (ratio == 1), because it doesn't make sense,
        and it also causes a divide by 0 error."""
        self.do_check( "x < 1", value )

    def run( self, vacancy_table, history_table, year, location_set, dataset_pool=None, resources=None ):
        self.dataset_pool=dataset_pool
        building_types = self.dataset_pool.get_dataset('building_type')
        target_vacancy_this_year = DatasetSubset(vacancy_table, index=where(vacancy_table.get_attribute("year")==year)[0])
        building_type_ids = target_vacancy_this_year.get_attribute('building_type_id')
        building_type_idx = building_types.get_id_index(building_type_ids)
        self.used_building_types = DatasetSubset(building_types, index=building_type_idx)
        project_types =  self.used_building_types.get_attribute('building_type_name')
        is_residential = self.used_building_types.get_attribute('is_residential')
        unit_names =  where(is_residential, 'residential_units', 'non_residential_sqft')
        specific_unit_names =  where(is_residential, 'residential_units', '_sqft')
        rates =  target_vacancy_this_year.get_attribute('target_total_vacancy')
        self.project_units = {}
        self.project_specific_units = {}
        target_rates = {}
        for i in range(self.used_building_types.size()):
            self.project_units[project_types[i]] = unit_names[i]
            if is_residential[i]:
                self.project_specific_units[project_types[i]] = specific_unit_names[i]
            else:
                self.project_specific_units[project_types[i]] = "%s%s" % (project_types[i], specific_unit_names[i])
            target_rates[building_type_ids[i]] = rates[i]
            
        self._compute_vacancy_and_total_units_variables(location_set, project_types, resources)
        self.pre_check( location_set, target_vacancy_this_year, project_types)
    
        projects = None
        for project_type_id, target_vacancy_rate in target_rates.iteritems():
            # determine current-year vacancy rates
            project_type = building_types.get_attribute_by_id('building_type_name', project_type_id)
            vacant_units_sum = location_set.get_attribute(self.variable_for_vacancy[project_type]).sum()
            units_sum = float( location_set.get_attribute(self.variable_for_total_units[project_type]).sum() )
            should_develop_units = int(round(max( 0, ( target_vacancy_rate * units_sum - vacant_units_sum ) /
                                         ( 1 - target_vacancy_rate ) )))
            logger.log_status(project_type + ": vacant units: %d, should be vacant: %f, sum units: %d"
                          % (vacant_units_sum, target_vacancy_rate * units_sum, units_sum))

            if not should_develop_units:
                logger.log_note(("Will not build any " + project_type + " units, because the current vacancy of %d units\n"
                             + "is more than the %d units desired for the vacancy rate of %f.")
                            % (vacant_units_sum,
                               target_vacancy_rate * units_sum,
                               target_vacancy_rate))
            #create projects
            if should_develop_units > 0:
                this_project = self._create_projects(should_develop_units, project_type, project_type_id, history_table,
                                                               location_set, units_sum, resources)
                if projects is None:
                    projects = this_project
                else:
                    projects.join_by_rows(this_project, change_ids_if_not_unique=True)
        return projects

    
    def _compute_vacancy_and_total_units_variables(self, location_set, project_types, resources=None):
        compute_resources = Resources(resources)
        compute_resources.merge({"debug":self.debug})
        self.variable_for_vacancy = {}
        self.variable_for_total_units = {}
        for ptype in project_types:
            self.variable_for_vacancy[ptype] = compute_resources.get(
                                    "%s_vacant_variable" % ptype,
                                    "urbansim_zone.%s.vacant_%s" % (location_set.get_dataset_name(),
                                                                     self.project_specific_units[ptype]))
            self.variable_for_total_units[ptype] = compute_resources.get(
                                    "%s_total_units_variable" % ptype,
                                    "%s.aggregate(urbansim_zone.building.total_%s)" % (location_set.get_dataset_name(), 
                                                             self.project_specific_units[ptype]))
            location_set.compute_variables([self.variable_for_vacancy[ptype], self.variable_for_total_units[ptype]], 
                                           dataset_pool=self.dataset_pool, resources = compute_resources)
            
    def _create_projects(self, should_develop_units, project_type, project_type_id, history_table, location_set, units_sum, resources=None):
#.........這裏部分代碼省略.........
開發者ID:,項目名稱:,代碼行數:103,代碼來源:

示例14: run

# 需要導入模塊: from opus_core.datasets.dataset import DatasetSubset [as 別名]
# 或者: from opus_core.datasets.dataset.DatasetSubset import size [as 別名]
    def run(self, realestate_dataset,
            living_units_dataset,
            year=None, 
            occupied_spaces_variable="occupied_units",
            total_spaces_variable="total_units",
            target_attribute_name='target_vacancy_rate',
            sample_from_dataset = None,
            living_units_from_dataset = None,
            sample_filter="",
            reset_attribute_value={}, 
            year_built = 'year_built',
            dataset_pool=None,
            append_to_realestate_dataset = False,
            table_name = "development_projects",
            dataset_name = "development_project",
            id_name = 'development_project_id',
            **kwargs):
        """         
        sample_filter attribute/variable indicates which records in the dataset are eligible in the sampling for removal or cloning
        append_to_realestate_dataset - whether to append the new dataset to realestate_dataset
        """
        
        if self.target_vancy_dataset is None:
            raise RuntimeError, "target_vacancy_rate dataset is unspecified."
        
        if not sample_from_dataset or not living_units_from_dataset:
            logger.log_note('No development projects or no living units of development projects to sample from. Development projects are taken from building dataset and thus living units from living_units dataset.')
            sample_from_dataset = realestate_dataset
            living_units_from_dataset = living_units_dataset
            
        if dataset_pool is None:
            dataset_pool = SessionConfiguration().get_dataset_pool()
        if year is None:
            year = SimulationState().get_current_time()
        this_year_index = where(self.target_vancy_dataset.get_attribute('year')==year)[0]
        target_vacancy_for_this_year = DatasetSubset(self.target_vancy_dataset, this_year_index)
        
        column_names = list(set( self.target_vancy_dataset.get_known_attribute_names() ) - set( [ target_attribute_name, occupied_spaces_variable, total_spaces_variable, 'year', '_hidden_id_'] ))
        column_names.sort(reverse=True)
        column_values = dict([ (name, target_vacancy_for_this_year.get_attribute(name)) for name in column_names + [target_attribute_name]])
        
        
        independent_variables = list(set([re.sub('_max$', '', re.sub('_min$', '', col)) for col in column_names]))
        sample_dataset_known_attributes = sample_from_dataset.get_known_attribute_names()
        for attribute in independent_variables:
            if attribute not in sample_dataset_known_attributes:
                sample_from_dataset.compute_one_variable_with_unknown_package(attribute, dataset_pool=dataset_pool)
        sample_dataset_known_attributes = sample_from_dataset.get_known_attribute_names() #update after compute
                
        if sample_filter:
            short_name = VariableName(sample_filter).get_alias()
            if short_name not in sample_dataset_known_attributes:
                filter_indicator = sample_from_dataset.compute_variables(sample_filter, dataset_pool=dataset_pool)
            else:
                filter_indicator = sample_from_dataset.get_attribute(short_name)
        else:
            filter_indicator = 1
                
        sampled_index = array([], dtype=int32)

        #log header
        if PrettyTable is not None:
            status_log = PrettyTable()
            status_log.set_field_names(column_names + ["actual", "target", "expected", "difference", "action"])
        else:
            logger.log_status("\t".join(column_names + ["actual", "target", "expected", "difference", "action"]))
        error_log = ''
        for index in range(target_vacancy_for_this_year.size()):
            sample_indicator = ones( sample_from_dataset.size(), dtype='bool' )
            criterion = {}   # for logging
            for attribute in independent_variables:
                if attribute in sample_dataset_known_attributes:
                    sample_attribute = sample_from_dataset.get_attribute(attribute)
                else:
                    raise ValueError, "attribute %s used in target vacancy dataset can not be found in dataset %s" % (attribute, realestate_dataset.get_dataset_name())
                
                if attribute + '_min' in column_names:
                    amin = target_vacancy_for_this_year.get_attribute(attribute+'_min')[index] 
                    criterion.update({attribute + '_min':amin})
                    if amin != -1:
                        sample_indicator *= sample_attribute >= amin
                if attribute + '_max' in column_names: 
                    amax = target_vacancy_for_this_year.get_attribute(attribute+'_max')[index]
                    criterion.update({attribute + '_max':amax}) 
                    if amax != -1:
                        sample_indicator *= sample_attribute <= amax
                if attribute in column_names: 
                    aval = column_values[attribute][index] 
                    criterion.update({attribute:aval}) 
                    if aval == -1:
                        continue
                    elif aval == -2:  ##treat -2 in control totals column as complement set, i.e. all other values not already specified in this column
                        sample_indicator *= logical_not(ismember(sample_attribute, column_values[attribute]))
                    else:
                        sample_indicator *= sample_attribute == aval
                        
            this_total_spaces_variable, this_occupied_spaces_variable = total_spaces_variable, occupied_spaces_variable
            ## total/occupied_spaces_variable can be specified either as a universal name for all realestate 
            ## or in targe_vacancy_rate dataset for each vacancy category
            if occupied_spaces_variable in target_vacancy_for_this_year.get_known_attribute_names():
#.........這裏部分代碼省略.........
開發者ID:psrc,項目名稱:urbansim,代碼行數:103,代碼來源:real_estate_and_units_transition_model.py

示例15: prepare_for_run

# 需要導入模塊: from opus_core.datasets.dataset import DatasetSubset [as 別名]
# 或者: from opus_core.datasets.dataset.DatasetSubset import size [as 別名]
    def prepare_for_run(self, dataset_pool, 
                        create_proposal_set=True,
                        parcel_filter_for_new_development=None, 
                        parcel_filter_for_redevelopment=None, 
                        template_filter=None,
                        spec_replace_module_variable_pair=None,
                        proposed_units_variable="urbansim_parcel.development_project_proposal.units_proposed",
                        **kwargs):
        """create development project proposal dataset from parcels and development templates.
        spec_replace_module_variable_pair is a tuple with two elements: module name, variable within the module
        that contans a dictionary of model variables to be replaced in the specification.
        """
        specification, coefficients, dummy = RegressionModel.prepare_for_run(self, **kwargs)
        try:
            existing_proposal_set_parent = dataset_pool.get_dataset('development_project_proposal')
            if 'units_proposed' not in existing_proposal_set_parent.get_known_attribute_names():
                ## compute 'units_proposed' and add it as a primary attribute (as it may be missing when loaded from the base_year_data)
                units_proposed = existing_proposal_set_parent.compute_variables(proposed_units_variable, dataset_pool)
                existing_proposal_set_parent.add_attribute(units_proposed, "units_proposed", AttributeType.PRIMARY)
            
            #load proposals whose status_id are not of id_tentative or id_not_available
            available_idx = where(in1d(existing_proposal_set_parent.get_attribute("status_id"), 
                                       array([DevelopmentProjectProposalDataset.id_active,
                                              DevelopmentProjectProposalDataset.id_proposed,
                                              DevelopmentProjectProposalDataset.id_planned,
                                              DevelopmentProjectProposalDataset.id_with_velocity])))[0]
            existing_proposal_set = DatasetSubset(existing_proposal_set_parent, available_idx)
            # Code updated by Hanyi Li, MAG 6/8/2010
            # Replacing the cached 'development_project_proposal' dataset with
            # the filtered dataset 'existing_proposal_set'
            dataset_pool.replace_dataset(existing_proposal_set_parent.get_dataset_name(), existing_proposal_set)
        except:
            existing_proposal_set = None
        
        parcels = dataset_pool.get_dataset('parcel')
        templates = dataset_pool.get_dataset('development_template')

        # It is important that during this method no variable flushing happens, since
        # we create datasets of the same name for different purposes (new development and redevelopment)
        # and flushing would mix them up
        flush_variables_current = SimulationState().get_flush_datasets()
        SimulationState().set_flush_datasets(False)
        
        # Code added by Jesse Ayers, MAG, 9/14/2009
        # Getting an index of parcels that have actively developing projects (those on a velocity function)
        # and making sure that new proposals are not generated for them
        if existing_proposal_set and existing_proposal_set.size()>0:
            parcels_with_proposals = existing_proposal_set.get_attribute('parcel_id')
            parcels_with_proposals_idx = parcels.get_id_index(parcels_with_proposals)
            if parcel_filter_for_new_development is not None:
                if parcel_filter_for_new_development[parcel_filter_for_new_development.find('=')+1] == '=':
                    filter = 'flter = numpy.logical_and(parcel.number_of_agents(development_project_proposal) == 0, %s)' % parcel_filter_for_new_development
                else:
                    parcel_filter_for_new_development = parcel_filter_for_new_development[parcel_filter_for_new_development.find('=')+1:].lstrip()
                    filter = 'flter = numpy.logical_and(parcel.number_of_agents(development_project_proposal) == 0, %s)' % parcel_filter_for_new_development
                index1 = where(parcels.compute_variables(filter))[0]

        else:
            if parcel_filter_for_new_development is not None:
                index1 = where(parcels.compute_variables(parcel_filter_for_new_development))[0]
            else:
                index1 = None
            
        if template_filter is not None:
            try:
                index2 = where(templates.compute_variables(template_filter))[0]
            except Exception, e:
                logger.log_warning( "template_filter is set to %s, but there is an error when computing it: %s"
                                   % (template_filter, e) )
                index2 = None
開發者ID:psrc,項目名稱:urbansim,代碼行數:72,代碼來源:development_project_proposal_regression_model.py


注:本文中的opus_core.datasets.dataset.DatasetSubset.size方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。