本文整理匯總了Python中opus_core.datasets.dataset.DatasetSubset.get_known_attribute_names方法的典型用法代碼示例。如果您正苦於以下問題:Python DatasetSubset.get_known_attribute_names方法的具體用法?Python DatasetSubset.get_known_attribute_names怎麽用?Python DatasetSubset.get_known_attribute_names使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類opus_core.datasets.dataset.DatasetSubset
的用法示例。
在下文中一共展示了DatasetSubset.get_known_attribute_names方法的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: run
# 需要導入模塊: from opus_core.datasets.dataset import DatasetSubset [as 別名]
# 或者: from opus_core.datasets.dataset.DatasetSubset import get_known_attribute_names [as 別名]
def run(
self,
realestate_dataset,
year=None,
occupied_spaces_variable="occupied_units",
total_spaces_variable="total_units",
target_attribute_name="target_vacancy_rate",
sample_from_dataset=None,
sample_filter="",
reset_attribute_value={},
year_built="year_built",
dataset_pool=None,
append_to_realestate_dataset=False,
table_name="development_projects",
dataset_name="development_project",
id_name="development_project_id",
**kwargs
):
"""
sample_filter attribute/variable indicates which records in the dataset are eligible in the sampling for removal or cloning
append_to_realestate_dataset - whether to append the new dataset to realestate_dataset
"""
if self.target_vancy_dataset is None:
raise RuntimeError, "target_vacancy_rate dataset is unspecified."
if not sample_from_dataset:
sample_from_dataset = realestate_dataset
# if dataset_pool is None:
# dataset_pool = SessionConfiguration().get_dataset_pool()
if year is None:
year = SimulationState().get_current_time()
this_year_index = where(self.target_vancy_dataset.get_attribute("year") == year)[0]
target_vacancy_for_this_year = DatasetSubset(self.target_vancy_dataset, this_year_index)
column_names = list(
set(self.target_vancy_dataset.get_known_attribute_names())
- set([target_attribute_name, occupied_spaces_variable, total_spaces_variable, "year", "_hidden_id_"])
)
column_names.sort(reverse=True)
column_values = dict(
[
(name, target_vacancy_for_this_year.get_attribute(name))
for name in column_names + [target_attribute_name]
]
)
independent_variables = list(set([re.sub("_max$", "", re.sub("_min$", "", col)) for col in column_names]))
dataset_known_attributes = realestate_dataset.get_known_attribute_names()
sample_dataset_known_attributes = sample_from_dataset.get_known_attribute_names()
for variable in independent_variables:
if variable not in dataset_known_attributes:
realestate_dataset.compute_one_variable_with_unknown_package(variable, dataset_pool=dataset_pool)
if variable not in sample_dataset_known_attributes:
sample_from_dataset.compute_one_variable_with_unknown_package(variable, dataset_pool=dataset_pool)
dataset_known_attributes = realestate_dataset.get_known_attribute_names() # update after compute
if sample_filter:
short_name = VariableName(sample_filter).get_alias()
if short_name not in dataset_known_attributes:
filter_indicator = sample_from_dataset.compute_variables(sample_filter, dataset_pool=dataset_pool)
else:
filter_indicator = sample_from_dataset.get_attribute(short_name)
else:
filter_indicator = 1
sampled_index = array([], dtype=int32)
# log header
if PrettyTable is not None:
status_log = PrettyTable()
status_log.set_field_names(column_names + ["actual", "target", "expected", "difference", "action"])
else:
logger.log_status("\t".join(column_names + ["actual", "target", "expected", "difference", "action"]))
error_log = ""
for index in range(target_vacancy_for_this_year.size()):
this_sampled_index = array([], dtype=int32)
indicator = ones(realestate_dataset.size(), dtype="bool")
sample_indicator = ones(sample_from_dataset.size(), dtype="bool")
criterion = {} # for logging
for attribute in independent_variables:
if attribute in dataset_known_attributes:
dataset_attribute = realestate_dataset.get_attribute(attribute)
sample_attribute = sample_from_dataset.get_attribute(attribute)
else:
raise ValueError, "attribute %s used in target vacancy dataset can not be found in dataset %s" % (
attribute,
realestate_dataset.get_dataset_name(),
)
if attribute + "_min" in column_names:
amin = target_vacancy_for_this_year.get_attribute(attribute + "_min")[index]
criterion.update({attribute + "_min": amin})
if amin != -1:
indicator *= dataset_attribute >= amin
sample_indicator *= sample_attribute >= amin
if attribute + "_max" in column_names:
amax = target_vacancy_for_this_year.get_attribute(attribute + "_max")[index]
criterion.update({attribute + "_max": amax})
#.........這裏部分代碼省略.........
示例2: run
# 需要導入模塊: from opus_core.datasets.dataset import DatasetSubset [as 別名]
# 或者: from opus_core.datasets.dataset.DatasetSubset import get_known_attribute_names [as 別名]
def run(self, n=500,
realestate_dataset_name = 'building',
current_year=None,
occupied_spaces_variable="occupied_spaces",
total_spaces_variable="total_spaces",
minimum_spaces_attribute="minimum_spaces",
within_parcel_selection_weight_string=None,
within_parcel_selection_n=0,
within_parcel_selection_compete_among_types=False,
within_parcel_selection_threshold=75,
within_parcel_selection_MU_same_weight=False,
within_parcel_selection_transpose_interpcl_weight=True,
run_config=None,
debuglevel=0):
"""
run method of the Development Project Proposal Sampling Model
**Parameters**
**n** : int, sample size for each iteration
sample n proposals at a time, which are then evaluated one by one until the
target vacancies are satisfied or proposals are running out
**realestate_dataset_name** : string, name of real estate dataset
**current_year**: int, simulation year. If None, get value from SimulationState
**occupied_spaces_variable** : string, variable name for calculating how much spaces are currently occupied
It can either be a variable for real_estate dataset that returns
the amount spaces being occupied or a target_vacancy attribute
that contains the name of real_estate variables.
**total_spaces_variable** : string, variable name for calculating total existing spaces
**Returns**
**proposal_set** : indices to proposal_set that are accepted
**demolished_buildings** : buildings to be demolished for re-development
"""
self.accepted_proposals = []
self.demolished_buildings = [] #id of buildings to be demolished
if self.proposal_set.n <= 0:
logger.log_status("The size of proposal_set is 0; no proposals to consider, skipping DPPSM.")
return (self.proposal_set, self.demolished_buildings)
target_vacancy = self.dataset_pool.get_dataset('target_vacancy')
if current_year is None:
year = SimulationState().get_current_time()
else:
year = current_year
this_year_index = where(target_vacancy['year']==year)[0]
target_vacancy_for_this_year = DatasetSubset(target_vacancy, this_year_index)
if target_vacancy_for_this_year.size() == 0:
raise IOError, 'No target vacancy defined for year %s.' % year
## current_target_vacancy.target_attribute_name = 'target_vacancy_rate'
## each column provides a category for which a target vacancy is specified
self.column_names = list(set( target_vacancy.get_known_attribute_names() ) - \
set( [ target_vacancy.target_attribute_name,
'year', '_hidden_id_', minimum_spaces_attribute,
occupied_spaces_variable, total_spaces_variable
] )
)
self.column_names.sort(reverse=True)
## buildings table provides existing stocks
self.realestate_dataset = self.dataset_pool.get_dataset(realestate_dataset_name)
occupied_spaces_variables = [occupied_spaces_variable]
total_spaces_variables = [total_spaces_variable]
if occupied_spaces_variable in target_vacancy_for_this_year.get_known_attribute_names():
occupied_spaces_variables += unique(target_vacancy_for_this_year[occupied_spaces_variable]).tolist()
if total_spaces_variable in target_vacancy_for_this_year.get_known_attribute_names():
total_spaces_variables += unique(target_vacancy_for_this_year[total_spaces_variable]).tolist()
self._compute_variables_for_dataset_if_needed(self.realestate_dataset, self.column_names + occupied_spaces_variables + total_spaces_variables)
self._compute_variables_for_dataset_if_needed(self.proposal_component_set, self.column_names + total_spaces_variables)
self.proposal_set.compute_variables(["urbansim_parcel.development_project_proposal.number_of_components",
"urbansim_parcel.development_project_proposal.land_area_taken"],
dataset_pool=self.dataset_pool)
n_column = len(self.column_names)
self.column_names_index = {}
for iname in range(n_column):
self.column_names_index[self.column_names[iname]] = iname
target_vacancy_for_this_year.column_values = target_vacancy_for_this_year.get_multiple_attributes(self.column_names).reshape((-1, n_column))
self.realestate_dataset.column_values = self.realestate_dataset.get_multiple_attributes(self.column_names).reshape((-1, n_column))
self.proposal_component_set.column_values = self.proposal_component_set.get_multiple_attributes(self.column_names).reshape((-1, n_column))
#defaults, can be changed later by spaces_variable specified in target_vacancy rates
self.realestate_dataset.total_spaces = self.realestate_dataset[total_spaces_variable]
self.proposal_component_set.total_spaces = self.proposal_component_set[total_spaces_variable]
self.realestate_dataset.occupied_spaces = self.realestate_dataset[occupied_spaces_variable]
#.........這裏部分代碼省略.........
示例3: run
# 需要導入模塊: from opus_core.datasets.dataset import DatasetSubset [as 別名]
# 或者: from opus_core.datasets.dataset.DatasetSubset import get_known_attribute_names [as 別名]
def run(self, realestate_dataset,
living_units_dataset,
year=None,
occupied_spaces_variable="occupied_units",
total_spaces_variable="total_units",
target_attribute_name='target_vacancy_rate',
sample_from_dataset = None,
living_units_from_dataset = None,
sample_filter="",
reset_attribute_value={},
year_built = 'year_built',
dataset_pool=None,
append_to_realestate_dataset = False,
table_name = "development_projects",
dataset_name = "development_project",
id_name = 'development_project_id',
**kwargs):
"""
sample_filter attribute/variable indicates which records in the dataset are eligible in the sampling for removal or cloning
append_to_realestate_dataset - whether to append the new dataset to realestate_dataset
"""
if self.target_vancy_dataset is None:
raise RuntimeError, "target_vacancy_rate dataset is unspecified."
if not sample_from_dataset or not living_units_from_dataset:
logger.log_note('No development projects or no living units of development projects to sample from. Development projects are taken from building dataset and thus living units from living_units dataset.')
sample_from_dataset = realestate_dataset
living_units_from_dataset = living_units_dataset
if dataset_pool is None:
dataset_pool = SessionConfiguration().get_dataset_pool()
if year is None:
year = SimulationState().get_current_time()
this_year_index = where(self.target_vancy_dataset.get_attribute('year')==year)[0]
target_vacancy_for_this_year = DatasetSubset(self.target_vancy_dataset, this_year_index)
column_names = list(set( self.target_vancy_dataset.get_known_attribute_names() ) - set( [ target_attribute_name, occupied_spaces_variable, total_spaces_variable, 'year', '_hidden_id_'] ))
column_names.sort(reverse=True)
column_values = dict([ (name, target_vacancy_for_this_year.get_attribute(name)) for name in column_names + [target_attribute_name]])
independent_variables = list(set([re.sub('_max$', '', re.sub('_min$', '', col)) for col in column_names]))
sample_dataset_known_attributes = sample_from_dataset.get_known_attribute_names()
for attribute in independent_variables:
if attribute not in sample_dataset_known_attributes:
sample_from_dataset.compute_one_variable_with_unknown_package(attribute, dataset_pool=dataset_pool)
sample_dataset_known_attributes = sample_from_dataset.get_known_attribute_names() #update after compute
if sample_filter:
short_name = VariableName(sample_filter).get_alias()
if short_name not in sample_dataset_known_attributes:
filter_indicator = sample_from_dataset.compute_variables(sample_filter, dataset_pool=dataset_pool)
else:
filter_indicator = sample_from_dataset.get_attribute(short_name)
else:
filter_indicator = 1
sampled_index = array([], dtype=int32)
#log header
if PrettyTable is not None:
status_log = PrettyTable()
status_log.set_field_names(column_names + ["actual", "target", "expected", "difference", "action"])
else:
logger.log_status("\t".join(column_names + ["actual", "target", "expected", "difference", "action"]))
error_log = ''
for index in range(target_vacancy_for_this_year.size()):
sample_indicator = ones( sample_from_dataset.size(), dtype='bool' )
criterion = {} # for logging
for attribute in independent_variables:
if attribute in sample_dataset_known_attributes:
sample_attribute = sample_from_dataset.get_attribute(attribute)
else:
raise ValueError, "attribute %s used in target vacancy dataset can not be found in dataset %s" % (attribute, realestate_dataset.get_dataset_name())
if attribute + '_min' in column_names:
amin = target_vacancy_for_this_year.get_attribute(attribute+'_min')[index]
criterion.update({attribute + '_min':amin})
if amin != -1:
sample_indicator *= sample_attribute >= amin
if attribute + '_max' in column_names:
amax = target_vacancy_for_this_year.get_attribute(attribute+'_max')[index]
criterion.update({attribute + '_max':amax})
if amax != -1:
sample_indicator *= sample_attribute <= amax
if attribute in column_names:
aval = column_values[attribute][index]
criterion.update({attribute:aval})
if aval == -1:
continue
elif aval == -2: ##treat -2 in control totals column as complement set, i.e. all other values not already specified in this column
sample_indicator *= logical_not(ismember(sample_attribute, column_values[attribute]))
else:
sample_indicator *= sample_attribute == aval
this_total_spaces_variable, this_occupied_spaces_variable = total_spaces_variable, occupied_spaces_variable
## total/occupied_spaces_variable can be specified either as a universal name for all realestate
## or in targe_vacancy_rate dataset for each vacancy category
if occupied_spaces_variable in target_vacancy_for_this_year.get_known_attribute_names():
#.........這裏部分代碼省略.........