當前位置: 首頁>>代碼示例>>Python>>正文


Python DatasetSubset.get_attribute方法代碼示例

本文整理匯總了Python中opus_core.datasets.dataset.DatasetSubset.get_attribute方法的典型用法代碼示例。如果您正苦於以下問題:Python DatasetSubset.get_attribute方法的具體用法?Python DatasetSubset.get_attribute怎麽用?Python DatasetSubset.get_attribute使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在opus_core.datasets.dataset.DatasetSubset的用法示例。


在下文中一共展示了DatasetSubset.get_attribute方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: run

# 需要導入模塊: from opus_core.datasets.dataset import DatasetSubset [as 別名]
# 或者: from opus_core.datasets.dataset.DatasetSubset import get_attribute [as 別名]
    def run( self, vacancy_table, history_table, year, location_set, dataset_pool=None, resources=None ):
        self.dataset_pool=dataset_pool
        building_types = self.dataset_pool.get_dataset('building_type')
        target_vacancy_this_year = DatasetSubset(vacancy_table, index=where(vacancy_table.get_attribute("year")==year)[0])
        building_type_ids = target_vacancy_this_year.get_attribute('building_type_id')
        building_type_idx = building_types.get_id_index(building_type_ids)
        self.used_building_types = DatasetSubset(building_types, index=building_type_idx)
        project_types =  self.used_building_types.get_attribute('building_type_name')
        is_residential = self.used_building_types.get_attribute('is_residential')
        unit_names =  where(is_residential, 'residential_units', 'non_residential_sqft')
        specific_unit_names =  where(is_residential, 'residential_units', '_sqft')
        rates =  target_vacancy_this_year.get_attribute('target_total_vacancy')
        self.project_units = {}
        self.project_specific_units = {}
        target_rates = {}
        for i in range(self.used_building_types.size()):
            self.project_units[project_types[i]] = unit_names[i]
            if is_residential[i]:
                self.project_specific_units[project_types[i]] = specific_unit_names[i]
            else:
                self.project_specific_units[project_types[i]] = "%s%s" % (project_types[i], specific_unit_names[i])
            target_rates[building_type_ids[i]] = rates[i]
            
        self._compute_vacancy_and_total_units_variables(location_set, project_types, resources)
        self.pre_check( location_set, target_vacancy_this_year, project_types)
    
        projects = None
        for project_type_id, target_vacancy_rate in target_rates.iteritems():
            # determine current-year vacancy rates
            project_type = building_types.get_attribute_by_id('building_type_name', project_type_id)
            vacant_units_sum = location_set.get_attribute(self.variable_for_vacancy[project_type]).sum()
            units_sum = float( location_set.get_attribute(self.variable_for_total_units[project_type]).sum() )
            should_develop_units = int(round(max( 0, ( target_vacancy_rate * units_sum - vacant_units_sum ) /
                                         ( 1 - target_vacancy_rate ) )))
            logger.log_status(project_type + ": vacant units: %d, should be vacant: %f, sum units: %d"
                          % (vacant_units_sum, target_vacancy_rate * units_sum, units_sum))

            if not should_develop_units:
                logger.log_note(("Will not build any " + project_type + " units, because the current vacancy of %d units\n"
                             + "is more than the %d units desired for the vacancy rate of %f.")
                            % (vacant_units_sum,
                               target_vacancy_rate * units_sum,
                               target_vacancy_rate))
            #create projects
            if should_develop_units > 0:
                this_project = self._create_projects(should_develop_units, project_type, project_type_id, history_table,
                                                               location_set, units_sum, resources)
                if projects is None:
                    projects = this_project
                else:
                    projects.join_by_rows(this_project, change_ids_if_not_unique=True)
        return projects
開發者ID:,項目名稱:,代碼行數:54,代碼來源:

示例2: run

# 需要導入模塊: from opus_core.datasets.dataset import DatasetSubset [as 別名]
# 或者: from opus_core.datasets.dataset.DatasetSubset import get_attribute [as 別名]
    def run( self, model_configuration, vacancy_table, history_table, year, 
             location_set, resources=None):
        large_area_ids = vacancy_table.get_attribute("large_area_id")
        locations_large_area_ids = location_set.compute_variables("washtenaw.%s.large_area_id" % location_set.get_dataset_name())
        unique_large_areas = unique(large_area_ids)
        self._compute_vacancy_variables(location_set, 
                                        model_configuration['development_project_types'], 
                                        resources)

        projects = {}
        for area in unique_large_areas:
            location_index = where(locations_large_area_ids == area)[0]
            locations_for_this_area = DatasetSubset(location_set, location_index)
            logger.log_status("DPLCM for area %s", area)
            target_residential_vacancy_rate, target_non_residential_vacancy_rate = self._get_target_vacancy_rates(vacancy_table, year, area)
            for project_type in model_configuration['development_project_types']:
                # determine current-year vacancy rates
                vacant_units_sum = locations_for_this_area.get_attribute(self.variable_for_vacancy[project_type]).sum()
                units_sum = float( locations_for_this_area.get_attribute(self.units_variable[project_type]).sum() )
                vacant_rate = self.safe_divide(vacant_units_sum, units_sum)
                if model_configuration['development_project_types'][project_type]['residential']:
                    target_vacancy_rate = target_residential_vacancy_rate
                else:
                    target_vacancy_rate = target_non_residential_vacancy_rate
                should_develop_units = int(round(max( 0, ( target_vacancy_rate * units_sum - vacant_units_sum ) /
                                             ( 1 - target_vacancy_rate ) )))
                logger.log_status(project_type + ": vacant units: %d, should be vacant: %f, sum units: %d, will develop: %d"
                          % (vacant_units_sum, target_vacancy_rate * units_sum, units_sum, should_develop_units))
                #create projects
                if should_develop_units > 0:
                    project_dataset = self._create_projects(should_develop_units, project_type, history_table,
                                                                   locations_for_this_area, units_sum, 
                                                                   model_configuration['development_project_types'], 
                                                                   resources)
                    project_dataset.add_attribute(array(project_dataset.size()*[area]), "large_area_id", 
                                                  metadata=AttributeType.PRIMARY)
                    if (project_type not in projects.keys()) or (projects[project_type] is None):
                        projects[project_type] = project_dataset
                    else:
                        projects[project_type].join_by_rows(project_dataset, change_ids_if_not_unique=True)
 
        for project_type in model_configuration['development_project_types']:
            if project_type not in projects.keys():
                projects[project_type] = None
            if projects[project_type] is None:
                size = 0
            else:
                projects[project_type].add_submodel_categories()
                size = projects[project_type].size()
            logger.log_status("%s %s projects to be built" % (size, project_type))  
        return projects
開發者ID:christianurich,項目名稱:VIBe2UrbanSim,代碼行數:53,代碼來源:regional_development_project_transition_model.py

示例3: choose_agents_to_move_from_overfilled_locations

# 需要導入模塊: from opus_core.datasets.dataset import DatasetSubset [as 別名]
# 或者: from opus_core.datasets.dataset.DatasetSubset import get_attribute [as 別名]
 def choose_agents_to_move_from_overfilled_locations(self, capacity,
                                                     agent_set, agents_index, agents_locations):
     """Agents with the smallest number of units should move again.
     """
     if capacity is None:
         return array([], dtype='int32')
     index_valid_agents_locations = where(agents_locations > 0)[0]
     valid_agents_locations = agents_locations[index_valid_agents_locations].astype("int32")
     unique_locations = unique(valid_agents_locations).astype("int32")
     index_consider_capacity = self.choice_set.get_id_index(unique_locations)
     capacity_of_affected_locations = capacity[index_consider_capacity]
     overfilled = where(capacity_of_affected_locations < 0)[0]
     movers = array([], dtype='int32')
     indexed_individuals = DatasetSubset(agent_set, agents_index[index_valid_agents_locations])
     ordered_agent_indices = self.get_agents_order(indexed_individuals)
     sizes = indexed_individuals.get_attribute(self.units_full_name)[ordered_agent_indices]
     choice_ids = self.choice_set.get_id_attribute()
     for loc in overfilled:
         agents_to_move = where(valid_agents_locations == choice_ids[index_consider_capacity[loc]])[0]
         if agents_to_move.size > 0:
             n = int(-1*capacity_of_affected_locations[loc])
             this_sizes = sizes[agents_to_move]
             csum = this_sizes[arange(this_sizes.size-1,-1,-1)].cumsum() # ordered increasingly
             csum = csum[arange(csum.size-1, -1,-1)] # ordered back decreasingly
             w = where(csum < n)[0]
             if w.size < agents_to_move.size: #add one more agent in order the cumsum be larger than n
                 w = concatenate((array([agents_to_move.size-w.size-1]), w))
             idx = ordered_agent_indices[agents_to_move[w]]
             movers = concatenate((movers, idx))
     return movers
開發者ID:christianurich,項目名稱:VIBe2UrbanSim,代碼行數:32,代碼來源:building_location_choice_model.py

示例4: estimate_mu

# 需要導入模塊: from opus_core.datasets.dataset import DatasetSubset [as 別名]
# 或者: from opus_core.datasets.dataset.DatasetSubset import get_attribute [as 別名]
 def estimate_mu(self):
     iout = -1
     self.values_from_mr = {}
     for quantity in self.observed_data.get_quantity_objects():
         dataset_name = quantity.get_dataset_name()
         variable = quantity.get_variable_name()
         iout += 1
         dimension_reduced = False
         quantity_ids = quantity.get_dataset().get_id_attribute()
         for i in range(self.number_of_runs):
             ds = self._compute_variable_for_one_run(i, variable, dataset_name, self.get_calibration_year(), quantity)
             if isinstance(ds, InteractionDataset):
                 ds = ds.get_flatten_dataset()
             if i == 0: # first run
                 self.mu[iout] = zeros((self.y[iout].size, self.number_of_runs), dtype=float32)
                 ids = ds.get_id_attribute()
             else:
                 if ds.size() > ids.shape[0]:
                     ds = DatasetSubset(ds, ds.get_id_index(ids))
                     dimension_reduced = True
             scale = self.get_scales(ds, i+1, variable)
             matching_index = ds.get_id_index(quantity_ids)
             values = scale[matching_index] * ds.get_attribute(variable)[matching_index]
             self.mu[iout][:,i] = try_transformation(values, quantity.get_transformation())
             
         self.values_from_mr[variable.get_expression()] = self.mu[iout]
         if dimension_reduced:
             self.y[iout] = self.y[iout][quantity.get_dataset().get_id_index(ids)]
開發者ID:janowicz,項目名稱:urbansim_drcog,代碼行數:30,代碼來源:bayesian_melding.py

示例5: _do_run

# 需要導入模塊: from opus_core.datasets.dataset import DatasetSubset [as 別名]
# 或者: from opus_core.datasets.dataset.DatasetSubset import get_attribute [as 別名]
    def _do_run(self, location_set, agent_set, agents_index, data_objects=None, resources=None):
        location_id_name = location_set.get_id_name()[0]
        jobsubset = DatasetSubset(agent_set, agents_index)
        if jobsubset.size() <= 0:
            return array([], dtype='int32')
        #unplace jobs
        agent_set.set_values_of_one_attribute(location_id_name, 
                                              resize(array([-1.0]), jobsubset.size()), agents_index)
        sector_ids = jobsubset.get_attribute("sector_id")
        sectors = unique(sector_ids)
        counts = ndimage_sum(ones((jobsubset.size(),)), labels=sector_ids.astype('int32'), index=sectors.astype('int32'))
        if sectors.size <=1 :
            counts = array([counts])
        variables = map(lambda x: "number_of_jobs_of_sector_"+str(int(x)), sectors)
        compute_variables = map(lambda var: self.variable_package + "." + 
            location_set.get_dataset_name()+ "." + var, variables)
        if data_objects is not None:
            self.dataset_pool.add_datasets_if_not_included(data_objects)
        self.dataset_pool.add_datasets_if_not_included({agent_set.get_dataset_name():agent_set})
        location_set.compute_variables(compute_variables, dataset_pool=self.dataset_pool)
        if self.filter is None:
            location_index = arange(location_set.size())
        else:
            filter_values = location_set.compute_variables([self.filter], dataset_pool=self.dataset_pool)
            location_index = where(filter_values > 0)[0]
        if location_index.size <= 0:
            logger.log_status("No locations available. Nothing to be done.")
            return array([])
        location_subset = DatasetSubset(location_set, location_index)
        i=0
        for sector in sectors:
            distr = location_subset.get_attribute(variables[i])
            if ma.allclose(distr.sum(), 0):
                uniform_prob = 1.0/distr.size
                distr = resize(array([uniform_prob], dtype='float64'), distr.size)
                logger.log_warning("Probabilities in scaling model for sector " + str(sector) + " sum to 0.0.  Substituting uniform distribution!")
#                random_sample = sample(location_set.get_attribute("grid_id"), k=int(counts[i]), \
#                                   probabilities = distr)
            distr = distr/float(distr.sum())
            random_sample = probsample_replace(location_subset.get_id_attribute(), size=int(counts[i]), 
                                       prob_array=distr)
            idx = where(sector_ids == sector)[0]
            #modify job locations
            agent_set.set_values_of_one_attribute(location_id_name, random_sample, agents_index[idx])
            i+=1
        return agent_set.get_attribute_by_index(location_id_name, agents_index)
開發者ID:psrc,項目名稱:urbansim,代碼行數:48,代碼來源:scaling_jobs_model.py

示例6: run

# 需要導入模塊: from opus_core.datasets.dataset import DatasetSubset [as 別名]
# 或者: from opus_core.datasets.dataset.DatasetSubset import get_attribute [as 別名]
    def run(self, year=None,
            dataset_pool=None,  **kwargs):
        """
        """
        if dataset_pool is None:
            dataset_pool = SessionConfiguration().get_dataset_pool()

        if year is None:
            year = SimulationState().get_current_time()
        
        this_year_index = where(self.scheduled_events.get_attribute('year')==year)[0]
        scheduled_events_for_this_year = DatasetSubset(self.scheduled_events, this_year_index)
        scheduled_events_for_this_year.load_dataset_if_not_loaded()
        column_names = list(set( self.scheduled_events.get_known_attribute_names() ) - set( [ 'year', 'action', 'attribute', 'amount', 'event_id', '_hidden_id_'] ))
        column_names.sort()
#        column_values = dict([ (name, scheduled_events_for_this_year.get_attribute(name)) for name in column_names])
        
        for index in range(scheduled_events_for_this_year.size()):
            indicator = ones( self.dataset.size(), dtype='bool' )
            event_attr = {}
            for attribute in column_names:
                if attribute in self.dataset.get_known_attribute_names():
                    dataset_attribute = self.dataset.get_attribute(attribute)
                else:
                    ## this is done inside the loop because some action may delete computed attributes, such as dataset.add_elements()
                    try:
                        dataset_attribute = self.dataset.compute_one_variable_with_unknown_package(attribute, dataset_pool=dataset_pool)
                    except:
                        raise ValueError, "attribute %s used in scheduled events dataset can not be found in dataset %s" % (attribute, self.dataset.get_dataset_name())
                
#                if attribute in column_names: 
                aval = scheduled_events_for_this_year.get_attribute(attribute)[index]
                if aval == -1:
                    continue    # ignore if column value is -1
                else:
                    indicator *= dataset_attribute == aval
                    event_attr.update({attribute:aval})
            
            #agents in dataset satisfying all conditions are identified by indicator
            legit_index = where(indicator)[0]
            
            this_event = scheduled_events_for_this_year.get_data_element(index)
            if not hasattr(this_event, 'attribute'):
                action_attr_name = ''
            else:
                action_attr_name = this_event.attribute
            action_function = getattr(self, '_' + this_event.action.strip().lower())
            action_function( amount=this_event.amount,
                             attribute=action_attr_name,
                             dataset=self.dataset, 
                             index=legit_index,
                             data_dict=event_attr )
            
            self.post_run(self.dataset, legit_index, **kwargs)

        return self.dataset
開發者ID:christianurich,項目名稱:VIBe2UrbanSim,代碼行數:58,代碼來源:scheduled_events_model.py

示例7: prepare_for_run

# 需要導入模塊: from opus_core.datasets.dataset import DatasetSubset [as 別名]
# 或者: from opus_core.datasets.dataset.DatasetSubset import get_attribute [as 別名]
    def prepare_for_run(self, dataset_pool, 
                        create_proposal_set=True,
                        parcel_filter_for_new_development=None, 
                        parcel_filter_for_redevelopment=None, 
                        template_filter=None,
                        spec_replace_module_variable_pair=None,
                        proposed_units_variable="urbansim_parcel.development_project_proposal.units_proposed",
                        **kwargs):
        """create development project proposal dataset from parcels and development templates.
        spec_replace_module_variable_pair is a tuple with two elements: module name, variable within the module
        that contans a dictionary of model variables to be replaced in the specification.
        """
        specification, coefficients, dummy = RegressionModel.prepare_for_run(self, **kwargs)
        try:
            existing_proposal_set_parent = dataset_pool.get_dataset('development_project_proposal')
            #load proposals whose status_id are not of id_tentative or id_not_available
            available_idx = where(logical_and(existing_proposal_set_parent.get_attribute("status_id") != DevelopmentProjectProposalDataset.id_tentative,
                                              existing_proposal_set_parent.get_attribute("status_id") != DevelopmentProjectProposalDataset.id_not_available))[0]
            existing_proposal_set = DatasetSubset(existing_proposal_set_parent, available_idx)
            # Code updated by Hanyi Li, MAG 6/8/2010
            # Replacing the cached 'development_project_proposal' dataset with
            # the filtered dataset 'existing_proposal_set'
            dataset_pool.replace_dataset(existing_proposal_set_parent.get_dataset_name(), existing_proposal_set)
        except:
            existing_proposal_set = None
        
        parcels = dataset_pool.get_dataset('parcel')
        templates = dataset_pool.get_dataset('development_template')

        # It is important that during this method no variable flushing happens, since
        # we create datasets of the same name for different purposes (new development and redevelopment)
        # and flushing would mix them up
        flush_variables_current = SessionConfiguration().get('flush_variables', False)
        SessionConfiguration().put_data({'flush_variables': False})
        
        # Code added by Jesse Ayers, MAG, 9/14/2009
        # Getting an index of parcels that have actively developing projects (those on a velocity function)
        # and making sure that new proposals are not generated for them
        if existing_proposal_set:
            parcels_with_proposals = existing_proposal_set.get_attribute('parcel_id')
            parcels_with_proposals_idx = parcels.get_id_index(parcels_with_proposals)
            if parcel_filter_for_new_development is not None:
                if parcel_filter_for_new_development[parcel_filter_for_new_development.find('=')+1] == '=':
                    filter = 'flter = numpy.logical_and(parcel.number_of_agents(development_project_proposal) == 0, %s)' % parcel_filter_for_new_development
                else:
                    parcel_filter_for_new_development = parcel_filter_for_new_development[parcel_filter_for_new_development.find('=')+1:].lstrip()
                    filter = 'flter = numpy.logical_and(parcel.number_of_agents(development_project_proposal) == 0, %s)' % parcel_filter_for_new_development
                index1 = where(parcels.compute_variables(filter))[0]

        else:
            if parcel_filter_for_new_development is not None:
                index1 = where(parcels.compute_variables(parcel_filter_for_new_development))[0]
            else:
                index1 = None
            
        if template_filter is not None:
            try:
                index2 = where(templates.compute_variables(template_filter))[0]
            except Exception, e:
                logger.log_warning( "template_filter is set to %s, but there is an error when computing it: %s"
                                   % (template_filter, e) )
                index2 = None
開發者ID:christianurich,項目名稱:VIBe2UrbanSim,代碼行數:64,代碼來源:development_project_proposal_regression_model.py

示例8: test_agents_placed_in_appropriate_types

# 需要導入模塊: from opus_core.datasets.dataset import DatasetSubset [as 別名]
# 或者: from opus_core.datasets.dataset.DatasetSubset import get_attribute [as 別名]
    def test_agents_placed_in_appropriate_types(self):
        """Create 1000 unplaced industrial jobs and 1 commercial job. Allocate 50 commercial
        gridcells with enough space for 10 commercial jobs per gridcell. After running the
        EmploymentLocationChoiceModel, the 1 commercial job should be placed,
        but the 100 industrial jobs should remain unplaced
        """
        storage = StorageFactory().get_storage('dict_storage')

        storage.write_table(table_name='job_building_types',
            table_data = {
                'id':array([2,1]),
                'name': array(['commercial', 'industrial'])
                }
            )
        job_building_types = JobBuildingTypeDataset(in_storage=storage, in_table_name='job_building_types')

        storage.write_table(table_name='jobs',
            table_data = {
                'job_id': arange(1001)+1,
                'grid_id': array([0]*1001),
                'building_type': array([1]*1000 + [2])
                }
            )
        jobs = JobDataset(in_storage=storage, in_table_name='jobs')

        storage.write_table(table_name='gridcells',
            table_data = {
                'grid_id': arange(50)+1,
                'commercial_sqft': array([1000]*50),
                'commercial_sqft_per_job': array([100]*50)
                }
            )
        gridcells = GridcellDataset(in_storage=storage, in_table_name='gridcells')

        coefficients = Coefficients(names=("dummy",), values=(0.1,))
        specification = EquationSpecification(variables=("gridcell.commercial_sqft",), coefficients=("dummy",))

        compute_resources = Resources({"job":jobs, "job_building_type": job_building_types})
        agents_index = where(jobs.get_attribute("grid_id") == 0)
        unplace_jobs = DatasetSubset(jobs, agents_index)
        agents_index = where(unplace_jobs.get_attribute("building_type") == 2)[0]
        gridcells.compute_variables(["urbansim.gridcell.number_of_commercial_jobs"],
                                    resources=compute_resources)
        commercial_jobs = gridcells.get_attribute("number_of_commercial_jobs")

        gridcells.compute_variables(["urbansim.gridcell.number_of_industrial_jobs"],
                                    resources=compute_resources)
        industrial_jobs = gridcells.get_attribute("number_of_industrial_jobs")
        model_group = ModelGroup(job_building_types, "name")
        elcm = EmploymentLocationChoiceModel(ModelGroupMember(model_group,"commercial"), location_set=gridcells,
               agents_grouping_attribute = "job.building_type",
               choices = "opus_core.random_choices_from_index", sample_size_locations = 30)
        elcm.run(specification, coefficients, agent_set = jobs, agents_index=agents_index, debuglevel=1)

        gridcells.compute_variables(["urbansim.gridcell.number_of_commercial_jobs"],
                                    resources=compute_resources)
        commercial_jobs = gridcells.get_attribute("number_of_commercial_jobs")

        gridcells.compute_variables(["urbansim.gridcell.number_of_industrial_jobs"],
                                    resources=compute_resources)
        industrial_jobs = gridcells.get_attribute("number_of_industrial_jobs")

        self.assertEqual(commercial_jobs.sum() == 1,
                         True, "Error, there should only be a total of 1 commercial job")
        self.assertEqual(industrial_jobs.sum() == 0,
                         True, "Error, there should be no industrial jobs because there's no space for them")
開發者ID:psrc,項目名稱:urbansim,代碼行數:68,代碼來源:test_agent_location_choice_model.py

示例9: EmploymentTransitionModel

# 需要導入模塊: from opus_core.datasets.dataset import DatasetSubset [as 別名]
# 或者: from opus_core.datasets.dataset.DatasetSubset import get_attribute [as 別名]
class EmploymentTransitionModel(Model):
    """Creates and removes jobs from job_set."""

    model_name = "Employment Transition Model"
    location_id_name_default = "grid_id"
    variable_package_default = "urbansim"

    def __init__(self, location_id_name=None, variable_package=None, dataset_pool=None, debuglevel=0):
        self.debug = DebugPrinter(debuglevel)
        self.location_id_name = self.location_id_name_default
        self.variable_package = self.variable_package_default
        if location_id_name is not None:
            self.location_id_name = location_id_name
        if variable_package is not None:
            self.variable_package = variable_package
        self.dataset_pool = self.create_dataset_pool(dataset_pool, ["urbansim", "opus_core"])

    def run(self, year, job_set, control_totals, job_building_types, data_objects=None, resources=None):
        self._do_initialize_for_run(job_set, job_building_types, data_objects)
        idx = where(control_totals.get_attribute("year")==year)[0]
        self.control_totals_for_this_year = DatasetSubset(control_totals, idx)
        self._do_run_for_this_year(job_set)
        return self._update_job_set(job_set)
        
    def _do_initialize_for_run(self, job_set, job_building_types, data_objects=None):
        self.max_id = job_set.get_id_attribute().max()
        self.job_size = job_set.size()
        self.job_id_name = job_set.get_id_name()[0]
        self.new_jobs = {
            self.location_id_name:array([], dtype=job_set.get_data_type(self.location_id_name, int32)),
            "sector_id":array([], dtype=job_set.get_data_type("sector_id", int32)),
            self.job_id_name:array([], dtype=job_set.get_data_type(self.job_id_name, int32)),
            "building_type":array([], dtype=job_set.get_data_type("building_type", int8))
                    }
        self.remove_jobs = array([], dtype=int32)
        if data_objects is not None:
            self.dataset_pool.add_datasets_if_not_included(data_objects)
        self.dataset_pool.add_datasets_if_not_included({job_building_types.get_dataset_name():job_building_types})
        self.available_building_types = job_building_types.get_id_attribute()

    def _compute_sector_variables(self, sectors, job_set):
        compute_resources = Resources({"debug":self.debug})
        job_set.compute_variables(
            map(lambda x: "%s.%s.is_in_employment_sector_%s_home_based"
                    % (self.variable_package, job_set.get_dataset_name(), x),
                sectors) +
            map(lambda x: "%s.%s.is_in_employment_sector_%s_non_home_based"
                    % (self.variable_package, job_set.get_dataset_name(), x),
                sectors) + ["is_non_home_based_job", "is_home_based_job"],
            dataset_pool = self.dataset_pool,
            resources = compute_resources)
        
    def _do_run_for_this_year(self, job_set):
        building_type = job_set.get_attribute("building_type")
        sectors = unique(self.control_totals_for_this_year.get_attribute("sector_id"))
        self._compute_sector_variables(sectors, job_set)
        for sector in sectors:
            isector = where(self.control_totals_for_this_year.get_attribute("sector_id") == sector)[0]
            total_hb_jobs = self.control_totals_for_this_year.get_attribute("total_home_based_employment")[isector]
            total_nhb_jobs = self.control_totals_for_this_year.get_attribute("total_non_home_based_employment")[isector]
            is_in_sector_hb = job_set.get_attribute("is_in_employment_sector_%s_home_based" % sector)
            is_in_sector_nhb = job_set.get_attribute("is_in_employment_sector_%s_non_home_based" % sector)
            diff_hb = int(total_hb_jobs - is_in_sector_hb.astype(int8).sum())
            diff_nhb = int(total_nhb_jobs - is_in_sector_nhb.astype(int8).sum())
            if diff_hb < 0: # home based jobs to be removed
                w = where(is_in_sector_hb == 1)[0]
                sample_array, non_placed, size_non_placed = \
                    get_array_without_non_placed_agents(job_set, w, -1*diff_hb,
                                                         self.location_id_name)
                self.remove_jobs = concatenate((self.remove_jobs, non_placed,
                                           sample_noreplace(sample_array, max(0,abs(diff_hb)-size_non_placed))))
            if diff_nhb < 0: # non home based jobs to be removed
                w = where(is_in_sector_nhb == 1)[0]
                sample_array, non_placed, size_non_placed = \
                    get_array_without_non_placed_agents(job_set, w, -1*diff_nhb,
                                                         self.location_id_name)
                self.remove_jobs = concatenate((self.remove_jobs, non_placed,
                                           sample_noreplace(sample_array, max(0,abs(diff_nhb)-size_non_placed))))

            if diff_hb > 0: # home based jobs to be created
                self.new_jobs[self.location_id_name] = concatenate((self.new_jobs[self.location_id_name],
                                   zeros((diff_hb,), dtype=self.new_jobs[self.location_id_name].dtype.type)))
                self.new_jobs["sector_id"] = concatenate((self.new_jobs["sector_id"],
                                   (resize(array([sector], dtype=self.new_jobs["sector_id"].dtype.type), diff_hb))))
                if 1 in is_in_sector_hb:
                    building_type_distribution = array(ndimage_sum(is_in_sector_hb,
                                                                    labels=building_type,
                                                                    index=self.available_building_types))
                elif 1 in job_set.get_attribute("is_home_based_job"): # take the building type distribution from the whole region
                    building_type_distribution = array(ndimage_sum(
                                                                job_set.get_attribute("is_home_based_job"),
                                                                labels=building_type,
                                                                index=self.available_building_types))
                else: # there are no home-based jobs in the region, take uniform distribution
                    building_type_distribution = ones(self.available_building_types.size)
                    building_type_distribution = building_type_distribution/building_type_distribution.sum()
                sampled_building_types = probsample_replace(
                    self.available_building_types, diff_hb, building_type_distribution/
                    float(building_type_distribution.sum()))
                self.new_jobs["building_type"] = concatenate((self.new_jobs["building_type"],
#.........這裏部分代碼省略.........
開發者ID:christianurich,項目名稱:VIBe2UrbanSim,代碼行數:103,代碼來源:employment_transition_model.py

示例10: run

# 需要導入模塊: from opus_core.datasets.dataset import DatasetSubset [as 別名]
# 或者: from opus_core.datasets.dataset.DatasetSubset import get_attribute [as 別名]
    def run(self, n=500, run_config=None, current_year=None, debuglevel=0):
        """
        n - sample n proposals at a time, evaluate them one by one
        """
        self.demolished_buildings = array([], dtype='int32')  #id of buildings to be demolished
        if current_year is None:
            current_year = SimulationState().get_current_time()
        if not self.positive_proposals:
            logger.log_status("Proposal Set size <= 0, no proposals to consider, skipping DPPSM.")
            return (self.proposal_set, self.demolished_buildings) 
        self.proposal_component_set.compute_variables([
            'urbansim_parcel.development_project_proposal_component.units_proposed',
            'urbansim_parcel.development_project_proposal_component.is_residential'],
                                        dataset_pool=self.dataset_pool)
        self.proposal_set.compute_variables([
            'urbansim_parcel.development_project_proposal.number_of_components',
            'zone_id=development_project_proposal.disaggregate(parcel.zone_id)',
            #'occurence_frequency = development_project_proposal.disaggregate(development_template.sample_size)'
            ],
                                        dataset_pool=self.dataset_pool)
        buildings = self.dataset_pool.get_dataset("building")
        buildings.compute_variables([
                                "occupied_units_for_jobs = urbansim_parcel.building.number_of_non_home_based_jobs",
                                "units_for_jobs = urbansim_parcel.building.total_non_home_based_job_space",
                                "occupied_residential_units = urbansim_parcel.building.number_of_households",
#                                "urbansim_parcel.building.existing_units",
                                "urbansim_parcel.building.is_residential"
                                    ],
                                    dataset_pool=self.dataset_pool)

        ## define unit_name by whether a building is residential or not (with is_residential attribute)
        ## if it is non-residential (0), count units by number of job spaces (units_for_jobs)
        ## if it is residential (1), count units by residenital units
        self.unit_name = array(["units_for_jobs", "residential_units"])
                
        target_vacancy = self.dataset_pool.get_dataset('target_vacancy')
        target_vacancy.compute_variables(['is_residential = target_vacancy.disaggregate(building_type.is_residential)'],
                                         dataset_pool=self.dataset_pool)
        # This try-except block checks to see if the object has a subarea_id_name,
        # if it does, it calculates the vacancy rates by subarea_id_name
        try:
            # Check for subarea_id_name in target_vacancies dataset
            # if it is present, vacancy rates are specified by subarea_id_name
            # if it is not, vacancy rates are specified region wide
            target_vacancy.load_dataset()
            if self.subarea_id_name in target_vacancy.get_attribute_names():
                current_target_vacancy_this_year = DatasetSubset(target_vacancy, index=where(target_vacancy.get_attribute("year")==current_year)[0])
                current_target_vacancy = DatasetSubset(current_target_vacancy_this_year, index=where(current_target_vacancy_this_year.get_attribute(self.subarea_id_name)==self.area_id)[0])
            else:
                current_target_vacancy = DatasetSubset(target_vacancy, index=where(target_vacancy.get_attribute("year")==current_year)[0])
        except AttributeError:
            # vacancy rates are specified region wide:
            current_target_vacancy = DatasetSubset(target_vacancy, index=where(target_vacancy.get_attribute("year")==current_year)[0])

        if current_target_vacancy.size() == 0:
            raise IOError, 'No target vacancy defined for year %s.' % current_year
        
        self.existing_units = {}   #total existing units by land_use type
        self.occupied_units = {}   #total occupied units by land_use type
        self.proposed_units = {}   #total proposed units by land_use type
        self.demolished_units = {} #total (to be) demolished units by land_use type

        components_building_type_ids = self.proposal_component_set.get_attribute("building_type_id").astype("int32")
        proposal_ids = self.proposal_set.get_id_attribute()
        proposal_ids_in_component_set = self.proposal_component_set.get_attribute("proposal_id")
        all_units_proposed = self.proposal_component_set.get_attribute("units_proposed")
        number_of_components_in_proposals = self.proposal_set.get_attribute("number_of_components")
        
        self.accepting_proposals = zeros(current_target_vacancy.get_attribute("building_type_id").max()+1, dtype='bool8')  #whether accepting new proposals, for each building type
        self.accepted_proposals = [] # index of accepted proposals

        self.target_vacancies = {}
        tv_building_types = current_target_vacancy.get_attribute("building_type_id")
        tv_rate = current_target_vacancy.get_attribute("target_vacancy_rate")
        for itype in range(tv_building_types.size):
            self.target_vacancies[tv_building_types[itype]] = tv_rate[itype]
            
        self.check_vacancy_rates(current_target_vacancy)  #initialize self.accepting_proposal based on current vacancy rate

        sqft_per_job = self.dataset_pool.get_dataset("building_sqft_per_job")
        zones_of_proposals = self.proposal_set.get_attribute("zone_id")
        self.building_sqft_per_job_table = sqft_per_job.get_building_sqft_as_table(zones_of_proposals.max(), 
                                                                                   tv_building_types.max())
        # consider only those proposals that have all components of accepted type and sum of proposed units > 0
        is_accepted_type = self.accepting_proposals[components_building_type_ids]
        sum_is_accepted_type_over_proposals = array(ndimage.sum(is_accepted_type, labels = proposal_ids_in_component_set, 
                                                          index = proposal_ids))
        sum_of_units_proposed = array(ndimage.sum(all_units_proposed, labels = proposal_ids_in_component_set, 
                                                          index = proposal_ids))
        is_proposal_eligible = logical_and(sum_is_accepted_type_over_proposals == number_of_components_in_proposals,
                                           sum_of_units_proposed > 0)

        is_proposal_eligible = logical_and(is_proposal_eligible,
                                           self.proposal_set.get_attribute("start_year")==current_year )
        ## handle planned proposals: all proposals with status_id == is_planned 
        ## and start_year == current_year are accepted
        planned_proposal_indexes = where(logical_and(
                                                  self.proposal_set.get_attribute("status_id") == self.proposal_set.id_planned, 
                                                  self.proposal_set.get_attribute("start_year") == current_year ) 
                                        )[0] 
#.........這裏部分代碼省略.........
開發者ID:christianurich,項目名稱:VIBe2UrbanSim,代碼行數:103,代碼來源:development_project_proposal_sampling_model.py

示例11: run

# 需要導入模塊: from opus_core.datasets.dataset import DatasetSubset [as 別名]
# 或者: from opus_core.datasets.dataset.DatasetSubset import get_attribute [as 別名]
    def run(self, realestate_dataset,
            living_units_dataset,
            year=None, 
            occupied_spaces_variable="occupied_units",
            total_spaces_variable="total_units",
            target_attribute_name='target_vacancy_rate',
            sample_from_dataset = None,
            living_units_from_dataset = None,
            sample_filter="",
            reset_attribute_value={}, 
            year_built = 'year_built',
            dataset_pool=None,
            append_to_realestate_dataset = False,
            table_name = "development_projects",
            dataset_name = "development_project",
            id_name = 'development_project_id',
            **kwargs):
        """         
        sample_filter attribute/variable indicates which records in the dataset are eligible in the sampling for removal or cloning
        append_to_realestate_dataset - whether to append the new dataset to realestate_dataset
        """
        
        if self.target_vancy_dataset is None:
            raise RuntimeError, "target_vacancy_rate dataset is unspecified."
        
        if not sample_from_dataset or not living_units_from_dataset:
            logger.log_note('No development projects or no living units of development projects to sample from. Development projects are taken from building dataset and thus living units from living_units dataset.')
            sample_from_dataset = realestate_dataset
            living_units_from_dataset = living_units_dataset
            
        if dataset_pool is None:
            dataset_pool = SessionConfiguration().get_dataset_pool()
        if year is None:
            year = SimulationState().get_current_time()
        this_year_index = where(self.target_vancy_dataset.get_attribute('year')==year)[0]
        target_vacancy_for_this_year = DatasetSubset(self.target_vancy_dataset, this_year_index)
        
        column_names = list(set( self.target_vancy_dataset.get_known_attribute_names() ) - set( [ target_attribute_name, occupied_spaces_variable, total_spaces_variable, 'year', '_hidden_id_'] ))
        column_names.sort(reverse=True)
        column_values = dict([ (name, target_vacancy_for_this_year.get_attribute(name)) for name in column_names + [target_attribute_name]])
        
        
        independent_variables = list(set([re.sub('_max$', '', re.sub('_min$', '', col)) for col in column_names]))
        sample_dataset_known_attributes = sample_from_dataset.get_known_attribute_names()
        for attribute in independent_variables:
            if attribute not in sample_dataset_known_attributes:
                sample_from_dataset.compute_one_variable_with_unknown_package(attribute, dataset_pool=dataset_pool)
        sample_dataset_known_attributes = sample_from_dataset.get_known_attribute_names() #update after compute
                
        if sample_filter:
            short_name = VariableName(sample_filter).get_alias()
            if short_name not in sample_dataset_known_attributes:
                filter_indicator = sample_from_dataset.compute_variables(sample_filter, dataset_pool=dataset_pool)
            else:
                filter_indicator = sample_from_dataset.get_attribute(short_name)
        else:
            filter_indicator = 1
                
        sampled_index = array([], dtype=int32)

        #log header
        if PrettyTable is not None:
            status_log = PrettyTable()
            status_log.set_field_names(column_names + ["actual", "target", "expected", "difference", "action"])
        else:
            logger.log_status("\t".join(column_names + ["actual", "target", "expected", "difference", "action"]))
        error_log = ''
        for index in range(target_vacancy_for_this_year.size()):
            sample_indicator = ones( sample_from_dataset.size(), dtype='bool' )
            criterion = {}   # for logging
            for attribute in independent_variables:
                if attribute in sample_dataset_known_attributes:
                    sample_attribute = sample_from_dataset.get_attribute(attribute)
                else:
                    raise ValueError, "attribute %s used in target vacancy dataset can not be found in dataset %s" % (attribute, realestate_dataset.get_dataset_name())
                
                if attribute + '_min' in column_names:
                    amin = target_vacancy_for_this_year.get_attribute(attribute+'_min')[index] 
                    criterion.update({attribute + '_min':amin})
                    if amin != -1:
                        sample_indicator *= sample_attribute >= amin
                if attribute + '_max' in column_names: 
                    amax = target_vacancy_for_this_year.get_attribute(attribute+'_max')[index]
                    criterion.update({attribute + '_max':amax}) 
                    if amax != -1:
                        sample_indicator *= sample_attribute <= amax
                if attribute in column_names: 
                    aval = column_values[attribute][index] 
                    criterion.update({attribute:aval}) 
                    if aval == -1:
                        continue
                    elif aval == -2:  ##treat -2 in control totals column as complement set, i.e. all other values not already specified in this column
                        sample_indicator *= logical_not(ismember(sample_attribute, column_values[attribute]))
                    else:
                        sample_indicator *= sample_attribute == aval
                        
            this_total_spaces_variable, this_occupied_spaces_variable = total_spaces_variable, occupied_spaces_variable
            ## total/occupied_spaces_variable can be specified either as a universal name for all realestate 
            ## or in targe_vacancy_rate dataset for each vacancy category
            if occupied_spaces_variable in target_vacancy_for_this_year.get_known_attribute_names():
#.........這裏部分代碼省略.........
開發者ID:psrc,項目名稱:urbansim,代碼行數:103,代碼來源:real_estate_and_units_transition_model.py

示例12: run

# 需要導入模塊: from opus_core.datasets.dataset import DatasetSubset [as 別名]
# 或者: from opus_core.datasets.dataset.DatasetSubset import get_attribute [as 別名]
    def run(self, year=None, 
            target_attribute_name='number_of_households', 
            sample_filter="", 
            reset_dataset_attribute_value={}, 
            dataset_pool=None,  **kwargs):
        """ sample_filter attribute/variable indicates which records in the dataset are eligible in the sampling for removal or cloning
        """
        #if dataset_pool is None:
        #    dataset_pool = SessionConfiguration().get_dataset_pool()

        if year is None:
            year = SimulationState().get_current_time()
        this_year_index = where(self.control_totals.get_attribute('year')==year)[0]
        control_totals_for_this_year = DatasetSubset(self.control_totals, this_year_index)
        column_names = list(set( self.control_totals.get_known_attribute_names() ) - set( [ target_attribute_name, 'year', '_hidden_id_'] ))
        column_names.sort(reverse=True)
        column_values = dict([ (name, control_totals_for_this_year.get_attribute(name)) for name in column_names + [target_attribute_name]])
        
        independent_variables = list(set([re.sub('_max$', '', re.sub('_min$', '', col)) for col in column_names]))
        dataset_known_attributes = self.dataset.get_known_attribute_names()
        for variable in independent_variables:
            if variable not in dataset_known_attributes:
                self.dataset.compute_one_variable_with_unknown_package(variable, dataset_pool=dataset_pool)
        dataset_known_attributes = self.dataset.get_known_attribute_names() #update after compute
        if sample_filter:
            short_name = VariableName(sample_filter).get_alias()
            if short_name not in dataset_known_attributes:
                filter_indicator = self.dataset.compute_variables(sample_filter, dataset_pool=dataset_pool)
            else:
                filter_indicator = self.dataset.get_attribute(short_name)
        else:
            filter_indicator = 1

        to_be_cloned = array([], dtype=int32)
        to_be_removed = array([], dtype=int32)
        #log header
        if PrettyTable is not None:
            status_log = PrettyTable()
            status_log.set_field_names(column_names + ["actual", "target", "difference", "action"])
        else:        
            logger.log_status("\t".join(column_names + ["actual", "target", "difference", "action"]))
        error_log = ''
        for index in range(control_totals_for_this_year.size()):
            lucky_index = None
            indicator = ones( self.dataset.size(), dtype='bool' )
            criterion = {}
            for attribute in independent_variables:
                if attribute in dataset_known_attributes:
                    dataset_attribute = self.dataset.get_attribute(attribute)
                else:
                    raise ValueError, "attribute %s used in control total dataset can not be found in dataset %s" % (attribute, self.dataset.get_dataset_name())
                if attribute + '_min' in column_names:
                    amin = column_values[attribute + '_min'][index]
                    criterion.update({attribute + '_min':amin})
                    if amin != -1:
                        indicator *= dataset_attribute >= amin
                if attribute + '_max' in column_names: 
                    amax = column_values[attribute+'_max'][index]
                    criterion.update({attribute + '_max':amax}) 
                    if amax != -1:
                        indicator *= dataset_attribute <= amax
                if attribute in column_names: 
                    aval = column_values[attribute][index] 
                    criterion.update({attribute:aval}) 
                    if aval == -1:
                        continue
                    elif aval == -2:   ##treat -2 in control totals column as complement set, i.e. all other values not already specified in this column
                        complement_values = setdiff1d( dataset_attribute, column_values[attribute] )
                        has_one_of_the_complement_value = zeros(dataset_attribute.size, dtype='bool')
                        for value in complement_values:
                            has_one_of_the_complement_value += dataset_attribute == value
                        indicator *= has_one_of_the_complement_value
                    else:
                        indicator *= dataset_attribute == aval
                        
            target_num = column_values[target_attribute_name][index]
            ## if accounting attribute is None, count number of agents with indicator = True 
            if self.dataset_accounting_attribute is None:
                actual_num = indicator.sum()
                action_num = 0
                diff = target_num - actual_num
                if actual_num != target_num:
                    legit_index = where(logical_and(indicator, filter_indicator))[0]
                    if legit_index.size > 0:                    
                        if actual_num < target_num:
                            lucky_index = sample_replace(legit_index, target_num - actual_num)
                            to_be_cloned = concatenate((to_be_cloned, lucky_index))
                        elif actual_num > target_num:
                            lucky_index = sample_noreplace(legit_index, actual_num-target_num)
                            to_be_removed = concatenate((to_be_removed, lucky_index))
                        action_num = lucky_index.size
                    else:
                        error_log += "There is nothing to sample from %s and no action will happen for" % self.dataset.get_dataset_name() + \
                                  ','.join([col+"="+str(criterion[col]) for col in column_names]) + '\n'
                        
            else: 
                ## sum accounting attribute for agents with indicator = True; 
                ## assume dataset_accouting_attribute is a primary attribute 
                accounting = self.dataset.get_attribute(self.dataset_accounting_attribute) * indicator
                actual_num = accounting.sum()
#.........這裏部分代碼省略.........
開發者ID:christianurich,項目名稱:VIBe2UrbanSim,代碼行數:103,代碼來源:transition_model.py

示例13: run

# 需要導入模塊: from opus_core.datasets.dataset import DatasetSubset [as 別名]
# 或者: from opus_core.datasets.dataset.DatasetSubset import get_attribute [as 別名]
 def run(self, dataset, outcome_attribute, weight_attribute, 
              control_totals, current_year, control_total_attribute=None, 
              year_attribute='year', capacity_attribute=None, add_quantity=False, dataset_pool=None):
     """'dataset' is a Dataset for which a quantity 'outcome_attribute' is created. The total amount of the quantity is 
     given by the attribute 'control_total_attribute' of the 'control_totals' Dataset. If it is not given, it is assumed 
     to have the same name as 'outcome_attribute'. The 'weight_attribute' of 'dataset' determines the allocation weights.
     The 'control_totals' Dataset contains an attribute 'year' (or alternatively, an attribute given by the 'year_attribute' argument)
     and optionally other attributes that must be known to the 'dataset' (such as a geography). For each row of the control_totals dataset
     for which year matches the 'current_year', the total amount is distributed among the corresponding members of 'dataset' according to weights.
     If a 'capacity_attribute' is given (attribute of 'dataset'), the algorithm removes any allocations that exceeds the capacity and 
     redistributes it among remaining members. The resulting values are appended to 'dataset' as 'outcome_attribute' (as primary attribute).
     If add_quantity is True and the 'outcome_attribute' exists in dataset, the resulting values are added to the current values of 
     'outcome_attribute'.
     """
     ct_attr = control_totals.get_known_attribute_names()
     if year_attribute not in ct_attr:
         raise StandardError, "Year attribute '%s' must be a known attribute of the control totals dataset." % year_attribute
     ct_attr.remove(year_attribute)
     if control_total_attribute is None:
         control_total_attribute = outcome_attribute
     if control_total_attribute not in ct_attr:
         raise StandardError, "Attribute '%s' must be a known attribute of the control totals dataset." % control_total_attribute
     ct_attr.remove(control_total_attribute)
     if control_totals._is_hidden_id():
         ct_attr.remove(control_totals.id_name()[0])
         
     # compute weights and other attributes necessary for allocation
     attrs_to_compute = [weight_attribute] + ct_attr
     if capacity_attribute is not None:
         attrs_to_compute.append(capacity_attribute)
     for attr in attrs_to_compute:
         try:
             dataset.compute_variables(attr, dataset_pool=dataset_pool)
         except:
             dataset.compute_one_variable_with_unknown_package(attr, dataset_pool=dataset_pool)
     
     # create subset of control totals for the current year
     year_index = where(control_totals.get_attribute(year_attribute) == current_year)[0]
     if year_index.size <= 0:
         logger.log_warning("No control total for year %s" % current_year)
         return None
     control_totals_for_this_year = DatasetSubset(control_totals, year_index)
     
     # check capacity
     if capacity_attribute is not None:
         if dataset.get_attribute(capacity_attribute).sum() < control_totals_for_this_year.get_attribute(control_total_attribute).sum():
             logger.log_warning("Capacity (%s) is smaller than the amount to allocate (%s)." % (dataset.get_attribute(capacity_attribute).sum(), 
                                                                                               control_totals_for_this_year.get_attribute(control_total_attribute).sum()))
         C = dataset.get_attribute(capacity_attribute).astype('int32')
         
     all_weights = dataset.get_attribute(weight_attribute)
     outcome = zeros(dataset.size(), dtype='int32')
     for ct_row in range(control_totals_for_this_year.size()):
         is_considered = ones(dataset.size(), dtype='bool8')
         for characteristics in ct_attr:
             is_considered = logical_and(is_considered, dataset.get_attribute(characteristics) == control_totals_for_this_year.get_attribute(characteristics)[ct_row])
         T = control_totals_for_this_year.get_attribute(control_total_attribute)[ct_row]
         it = 1
         while True:
             is_considered_idx = where(is_considered)[0]
             weights = all_weights[is_considered_idx]
             weights_sum = float(weights.sum())
             outcome[is_considered_idx] = round_(outcome[is_considered_idx] + T * (weights/weights_sum)).astype('int32')
             if capacity_attribute is None:
                 break
             diff = outcome[is_considered_idx] - C[is_considered_idx]
             outcome[is_considered_idx] = clip(outcome[is_considered_idx], 0, C[is_considered_idx])
             if it == 1 and C[is_considered_idx].sum() < T:
                 logger.log_warning("Control total %s cannot be met due to a capacity restriction of %s" % (T, C[is_considered_idx].sum()))
             T = where(diff < 0, 0, diff).sum()
             if T <= 0:
                 break
             is_considered = logical_and(is_considered, outcome < C)
             it += 1
     if add_quantity and (outcome_attribute in dataset.get_known_attribute_names()):
         dataset.modify_attribute(name=outcome_attribute, data=outcome+dataset.get_attribute(outcome_attribute))
         logger.log_status('New values added to the attribute %s of dataset %s.' % (outcome_attribute, dataset.get_dataset_name()))
     else:
         dataset.add_primary_attribute(name=outcome_attribute, data=outcome)
         logger.log_status('New values stored into attribute %s of dataset %s.' % (outcome_attribute, dataset.get_dataset_name()))
     dataset.flush_attribute(outcome_attribute)
     return outcome
開發者ID:janowicz,項目名稱:urbansim_drcog,代碼行數:84,代碼來源:allocation_model.py

示例14: DevelopmentProjectTransitionModel

# 需要導入模塊: from opus_core.datasets.dataset import DatasetSubset [as 別名]
# 或者: from opus_core.datasets.dataset.DatasetSubset import get_attribute [as 別名]
class DevelopmentProjectTransitionModel( Model ):
    """
    Creates development projects. Each development project is for a single type
    of development, e.g. 'industrial' or 'commercial'.  This model creates
    enough development projects to match the desired vacancy rates, as defined in the target_vacancies
    table.  It does not place any projects in locations; that is the job of the development project
    location choice models.  The distribution of project sizes (amount of space, value of space) is
    determined by sampling from the projects in the development_event_history table.
    """
    model_name = "Development Project Transition Model"
    
    def __init__( self, debuglevel=0 ):
        self.debug = DebugPrinter( debuglevel )

    def pre_check( self, location_set, vacancy_table, types ):
        for ptype in types:
            self.check_for_space( location_set.get_attribute(self.variable_for_total_units[ptype]))
        self.check_target_vacancy_is_not_100_percent( vacancy_table.get_attribute( "target_total_vacancy"))

    def check_for_space( self, values ):
        """Check that this array of values sums to something > 0."""
        self.do_check( "x > 0", array( [values.sum()] ) )

    def check_target_vacancy_is_not_100_percent( self, value ):
        """Check that the target vacancy rate is not 100% (ratio == 1), because it doesn't make sense,
        and it also causes a divide by 0 error."""
        self.do_check( "x < 1", value )

    def run( self, vacancy_table, history_table, year, location_set, dataset_pool=None, resources=None ):
        self.dataset_pool=dataset_pool
        building_types = self.dataset_pool.get_dataset('building_type')
        target_vacancy_this_year = DatasetSubset(vacancy_table, index=where(vacancy_table.get_attribute("year")==year)[0])
        building_type_ids = target_vacancy_this_year.get_attribute('building_type_id')
        building_type_idx = building_types.get_id_index(building_type_ids)
        self.used_building_types = DatasetSubset(building_types, index=building_type_idx)
        project_types =  self.used_building_types.get_attribute('building_type_name')
        is_residential = self.used_building_types.get_attribute('is_residential')
        unit_names =  where(is_residential, 'residential_units', 'non_residential_sqft')
        specific_unit_names =  where(is_residential, 'residential_units', '_sqft')
        rates =  target_vacancy_this_year.get_attribute('target_total_vacancy')
        self.project_units = {}
        self.project_specific_units = {}
        target_rates = {}
        for i in range(self.used_building_types.size()):
            self.project_units[project_types[i]] = unit_names[i]
            if is_residential[i]:
                self.project_specific_units[project_types[i]] = specific_unit_names[i]
            else:
                self.project_specific_units[project_types[i]] = "%s%s" % (project_types[i], specific_unit_names[i])
            target_rates[building_type_ids[i]] = rates[i]
            
        self._compute_vacancy_and_total_units_variables(location_set, project_types, resources)
        self.pre_check( location_set, target_vacancy_this_year, project_types)
    
        projects = None
        for project_type_id, target_vacancy_rate in target_rates.iteritems():
            # determine current-year vacancy rates
            project_type = building_types.get_attribute_by_id('building_type_name', project_type_id)
            vacant_units_sum = location_set.get_attribute(self.variable_for_vacancy[project_type]).sum()
            units_sum = float( location_set.get_attribute(self.variable_for_total_units[project_type]).sum() )
            should_develop_units = int(round(max( 0, ( target_vacancy_rate * units_sum - vacant_units_sum ) /
                                         ( 1 - target_vacancy_rate ) )))
            logger.log_status(project_type + ": vacant units: %d, should be vacant: %f, sum units: %d"
                          % (vacant_units_sum, target_vacancy_rate * units_sum, units_sum))

            if not should_develop_units:
                logger.log_note(("Will not build any " + project_type + " units, because the current vacancy of %d units\n"
                             + "is more than the %d units desired for the vacancy rate of %f.")
                            % (vacant_units_sum,
                               target_vacancy_rate * units_sum,
                               target_vacancy_rate))
            #create projects
            if should_develop_units > 0:
                this_project = self._create_projects(should_develop_units, project_type, project_type_id, history_table,
                                                               location_set, units_sum, resources)
                if projects is None:
                    projects = this_project
                else:
                    projects.join_by_rows(this_project, change_ids_if_not_unique=True)
        return projects

    
    def _compute_vacancy_and_total_units_variables(self, location_set, project_types, resources=None):
        compute_resources = Resources(resources)
        compute_resources.merge({"debug":self.debug})
        self.variable_for_vacancy = {}
        self.variable_for_total_units = {}
        for ptype in project_types:
            self.variable_for_vacancy[ptype] = compute_resources.get(
                                    "%s_vacant_variable" % ptype,
                                    "urbansim_zone.%s.vacant_%s" % (location_set.get_dataset_name(),
                                                                     self.project_specific_units[ptype]))
            self.variable_for_total_units[ptype] = compute_resources.get(
                                    "%s_total_units_variable" % ptype,
                                    "%s.aggregate(urbansim_zone.building.total_%s)" % (location_set.get_dataset_name(), 
                                                             self.project_specific_units[ptype]))
            location_set.compute_variables([self.variable_for_vacancy[ptype], self.variable_for_total_units[ptype]], 
                                           dataset_pool=self.dataset_pool, resources = compute_resources)
            
    def _create_projects(self, should_develop_units, project_type, project_type_id, history_table, location_set, units_sum, resources=None):
#.........這裏部分代碼省略.........
開發者ID:,項目名稱:,代碼行數:103,代碼來源:

示例15: run

# 需要導入模塊: from opus_core.datasets.dataset import DatasetSubset [as 別名]
# 或者: from opus_core.datasets.dataset.DatasetSubset import get_attribute [as 別名]
    def run(
        self,
        realestate_dataset,
        year=None,
        occupied_spaces_variable="occupied_units",
        total_spaces_variable="total_units",
        target_attribute_name="target_vacancy_rate",
        sample_from_dataset=None,
        sample_filter="",
        reset_attribute_value={},
        year_built="year_built",
        dataset_pool=None,
        append_to_realestate_dataset=False,
        table_name="development_projects",
        dataset_name="development_project",
        id_name="development_project_id",
        **kwargs
    ):
        """         
        sample_filter attribute/variable indicates which records in the dataset are eligible in the sampling for removal or cloning
        append_to_realestate_dataset - whether to append the new dataset to realestate_dataset
        """

        if self.target_vancy_dataset is None:
            raise RuntimeError, "target_vacancy_rate dataset is unspecified."

        if not sample_from_dataset:
            sample_from_dataset = realestate_dataset

        # if dataset_pool is None:
        #    dataset_pool = SessionConfiguration().get_dataset_pool()
        if year is None:
            year = SimulationState().get_current_time()
        this_year_index = where(self.target_vancy_dataset.get_attribute("year") == year)[0]
        target_vacancy_for_this_year = DatasetSubset(self.target_vancy_dataset, this_year_index)

        column_names = list(
            set(self.target_vancy_dataset.get_known_attribute_names())
            - set([target_attribute_name, occupied_spaces_variable, total_spaces_variable, "year", "_hidden_id_"])
        )
        column_names.sort(reverse=True)
        column_values = dict(
            [
                (name, target_vacancy_for_this_year.get_attribute(name))
                for name in column_names + [target_attribute_name]
            ]
        )

        independent_variables = list(set([re.sub("_max$", "", re.sub("_min$", "", col)) for col in column_names]))
        dataset_known_attributes = realestate_dataset.get_known_attribute_names()
        sample_dataset_known_attributes = sample_from_dataset.get_known_attribute_names()
        for variable in independent_variables:
            if variable not in dataset_known_attributes:
                realestate_dataset.compute_one_variable_with_unknown_package(variable, dataset_pool=dataset_pool)
            if variable not in sample_dataset_known_attributes:
                sample_from_dataset.compute_one_variable_with_unknown_package(variable, dataset_pool=dataset_pool)

        dataset_known_attributes = realestate_dataset.get_known_attribute_names()  # update after compute
        if sample_filter:
            short_name = VariableName(sample_filter).get_alias()
            if short_name not in dataset_known_attributes:
                filter_indicator = sample_from_dataset.compute_variables(sample_filter, dataset_pool=dataset_pool)
            else:
                filter_indicator = sample_from_dataset.get_attribute(short_name)
        else:
            filter_indicator = 1

        sampled_index = array([], dtype=int32)

        # log header
        if PrettyTable is not None:
            status_log = PrettyTable()
            status_log.set_field_names(column_names + ["actual", "target", "expected", "difference", "action"])
        else:
            logger.log_status("\t".join(column_names + ["actual", "target", "expected", "difference", "action"]))
        error_log = ""
        for index in range(target_vacancy_for_this_year.size()):
            this_sampled_index = array([], dtype=int32)
            indicator = ones(realestate_dataset.size(), dtype="bool")
            sample_indicator = ones(sample_from_dataset.size(), dtype="bool")
            criterion = {}  # for logging
            for attribute in independent_variables:
                if attribute in dataset_known_attributes:
                    dataset_attribute = realestate_dataset.get_attribute(attribute)
                    sample_attribute = sample_from_dataset.get_attribute(attribute)
                else:
                    raise ValueError, "attribute %s used in target vacancy dataset can not be found in dataset %s" % (
                        attribute,
                        realestate_dataset.get_dataset_name(),
                    )

                if attribute + "_min" in column_names:
                    amin = target_vacancy_for_this_year.get_attribute(attribute + "_min")[index]
                    criterion.update({attribute + "_min": amin})
                    if amin != -1:
                        indicator *= dataset_attribute >= amin
                        sample_indicator *= sample_attribute >= amin
                if attribute + "_max" in column_names:
                    amax = target_vacancy_for_this_year.get_attribute(attribute + "_max")[index]
                    criterion.update({attribute + "_max": amax})
#.........這裏部分代碼省略.........
開發者ID:psrc,項目名稱:urbansim,代碼行數:103,代碼來源:real_estate_transition_model.py


注:本文中的opus_core.datasets.dataset.DatasetSubset.get_attribute方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。