本文整理匯總了Python中opus_core.datasets.dataset.DatasetSubset類的典型用法代碼示例。如果您正苦於以下問題:Python DatasetSubset類的具體用法?Python DatasetSubset怎麽用?Python DatasetSubset使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。
在下文中一共展示了DatasetSubset類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: run
def run(self, year, job_set, control_totals, job_building_types, data_objects=None, resources=None):
self._do_initialize_for_run(job_set, job_building_types, data_objects)
large_area_ids = control_totals.get_attribute("large_area_id")
jobs_large_area_ids = job_set.compute_variables("washtenaw.job.large_area_id")
unique_large_areas = unique(large_area_ids)
is_year = control_totals.get_attribute("year")==year
all_jobs_index = arange(job_set.size())
sectors = unique(control_totals.get_attribute("sector_id")[is_year])
self._compute_sector_variables(sectors, job_set)
for area in unique_large_areas:
idx = where(logical_and(is_year, large_area_ids == area))[0]
self.control_totals_for_this_year = DatasetSubset(control_totals, idx)
jobs_index = where(jobs_large_area_ids == area)[0]
jobs_for_this_area = DatasetSubset(job_set, jobs_index)
logger.log_status("ETM for area %s (currently %s jobs)" % (area, jobs_for_this_area.size()))
last_remove_idx = self.remove_jobs.size
self._do_run_for_this_year(jobs_for_this_area)
add_jobs_size = self.new_jobs[self.location_id_name].size-self.new_jobs["large_area_id"].size
remove_jobs_size = self.remove_jobs.size-last_remove_idx
logger.log_status("add %s, remove %s, total %s" % (add_jobs_size, remove_jobs_size,
jobs_for_this_area.size()+add_jobs_size-remove_jobs_size))
self.new_jobs["large_area_id"] = concatenate((self.new_jobs["large_area_id"],
array(add_jobs_size*[area], dtype="int32")))
# transform indices of removing jobs into indices of the whole dataset
self.remove_jobs[last_remove_idx:self.remove_jobs.size] = all_jobs_index[jobs_index[self.remove_jobs[last_remove_idx:self.remove_jobs.size]]]
self._update_job_set(job_set)
idx_new_jobs = arange(job_set.size()-self.new_jobs["large_area_id"].size, job_set.size())
jobs_large_area_ids = job_set.compute_variables("washtenaw.job.large_area_id")
jobs_large_area_ids[idx_new_jobs] = self.new_jobs["large_area_id"]
job_set.delete_one_attribute("large_area_id")
job_set.add_attribute(jobs_large_area_ids, "large_area_id", metadata=AttributeType.PRIMARY)
# return an index of new jobs
return arange(job_set.size()-self.new_jobs["large_area_id"].size, job_set.size())
示例2: estimate_mu
def estimate_mu(self):
iout = -1
self.values_from_mr = {}
for quantity in self.observed_data.get_quantity_objects():
dataset_name = quantity.get_dataset_name()
variable = quantity.get_variable_name()
iout += 1
dimension_reduced = False
quantity_ids = quantity.get_dataset().get_id_attribute()
for i in range(self.number_of_runs):
ds = self._compute_variable_for_one_run(i, variable, dataset_name, self.get_calibration_year(), quantity)
if isinstance(ds, InteractionDataset):
ds = ds.get_flatten_dataset()
if i == 0: # first run
self.mu[iout] = zeros((self.y[iout].size, self.number_of_runs), dtype=float32)
ids = ds.get_id_attribute()
else:
if ds.size() > ids.shape[0]:
ds = DatasetSubset(ds, ds.get_id_index(ids))
dimension_reduced = True
scale = self.get_scales(ds, i+1, variable)
matching_index = ds.get_id_index(quantity_ids)
values = scale[matching_index] * ds.get_attribute(variable)[matching_index]
self.mu[iout][:,i] = try_transformation(values, quantity.get_transformation())
self.values_from_mr[variable.get_expression()] = self.mu[iout]
if dimension_reduced:
self.y[iout] = self.y[iout][quantity.get_dataset().get_id_index(ids)]
示例3: choose_agents_to_move_from_overfilled_locations
def choose_agents_to_move_from_overfilled_locations(self, capacity,
agent_set, agents_index, agents_locations):
"""Agents with the smallest number of units should move again.
"""
if capacity is None:
return array([], dtype='int32')
index_valid_agents_locations = where(agents_locations > 0)[0]
valid_agents_locations = agents_locations[index_valid_agents_locations].astype("int32")
unique_locations = unique(valid_agents_locations).astype("int32")
index_consider_capacity = self.choice_set.get_id_index(unique_locations)
capacity_of_affected_locations = capacity[index_consider_capacity]
overfilled = where(capacity_of_affected_locations < 0)[0]
movers = array([], dtype='int32')
indexed_individuals = DatasetSubset(agent_set, agents_index[index_valid_agents_locations])
ordered_agent_indices = self.get_agents_order(indexed_individuals)
sizes = indexed_individuals.get_attribute(self.units_full_name)[ordered_agent_indices]
choice_ids = self.choice_set.get_id_attribute()
for loc in overfilled:
agents_to_move = where(valid_agents_locations == choice_ids[index_consider_capacity[loc]])[0]
if agents_to_move.size > 0:
n = int(-1*capacity_of_affected_locations[loc])
this_sizes = sizes[agents_to_move]
csum = this_sizes[arange(this_sizes.size-1,-1,-1)].cumsum() # ordered increasingly
csum = csum[arange(csum.size-1, -1,-1)] # ordered back decreasingly
w = where(csum < n)[0]
if w.size < agents_to_move.size: #add one more agent in order the cumsum be larger than n
w = concatenate((array([agents_to_move.size-w.size-1]), w))
idx = ordered_agent_indices[agents_to_move[w]]
movers = concatenate((movers, idx))
return movers
示例4: run
def run(self, location_set, development_event_set, *args, **kwargs):
changed_indices, processed_development_event_indices = \
EventsCoordinator.run(self, location_set,
development_event_set, *args, **kwargs)
if development_event_set is not None:
subset = DatasetSubset(development_event_set, processed_development_event_indices)
subset.write_dataset(out_storage=AttributeCache())
return (changed_indices, processed_development_event_indices)
示例5: run
def run(self, current_year_emme2_dir, current_year, dataset_pool, config=None):
"""Writes to the an emme2 input file in the [current_year_emme2_dir]/tripgen/inputtg/tazdata.ma2.
"""
missing_dataset = ''
try:
missing_dataset = 'constant_taz_column'
taz_col_set = dataset_pool.get_dataset("constant_taz_column")
taz_col_set.load_dataset()
missing_dataset = 'zone'
zone_set = dataset_pool.get_dataset("zone")
zone_set.load_dataset()
missing_dataset = 'household'
household_set = dataset_pool.get_dataset("household")
except:
raise Exception("Dataset %s is missing from dataset_pool" % missing_dataset)
"""specify travel input file name: [current_year_emme2_dir]/tripgen/inputtg/tazdata.ma2 """
full_path = os.path.join(current_year_emme2_dir, 'tripgen', 'inputtg')
if not os.path.exists(full_path):
os.makedirs(full_path)
tm_input_file = os.path.join(full_path, 'tazdata.ma2')
tm_year = self._decade_floor(current_year)
logger.log_status("calculating entries for emme2 input file")
taz_col_set.compute_variables("zone_id=constant_taz_column.taz")
current_taz_col = DatasetSubset(taz_col_set, index=where(taz_col_set.get_attribute("year")==tm_year)[0])
current_taz_col._id_names = ['taz']
current_taz_col._create_id_mapping()
zone_set.join(current_taz_col, "pctmf", join_attribute='zone_id')
zone_set.join(current_taz_col, "gqi", join_attribute='zone_id')
zone_set.join(current_taz_col, "gqn", join_attribute='zone_id')
zone_set.join(current_taz_col, "fteuniv", join_attribute='zone_id')
zone_set.join(current_taz_col, "den", new_name='density', join_attribute='zone_id')
value_122 = zeros(zone_set.size())
index_122 = zone_set.try_get_id_index(array([58,59,60,71,72,73,84,85,86,150,251,266,489,578,687,688,797,868]))
value_122[index_122[index_122 != -1]] = 1
zone_set.add_attribute(data=value_122, name="v122")
value_123 = zeros(zone_set.size())
index_123 = zone_set.try_get_id_index(array([531,646,847,850,888,894,899,910]))
value_123[index_123[index_123 != -1]] = 1
zone_set.add_attribute(data=value_123, name="v123")
value_124 = logical_not(value_122 + value_123)
zone_set.add_attribute(data=value_124, name="v124")
"""specify which variables are passing from urbansim to travel model; the order matters"""
variables_list = self.get_variables_list(dataset_pool)
zone_set.compute_variables(variables_list, dataset_pool=dataset_pool )
return self._write_to_file(zone_set, variables_list, tm_input_file)
示例6: run
def run( self, vacancy_table, history_table, year, location_set, dataset_pool=None, resources=None ):
self.dataset_pool=dataset_pool
building_types = self.dataset_pool.get_dataset('building_type')
target_vacancy_this_year = DatasetSubset(vacancy_table, index=where(vacancy_table.get_attribute("year")==year)[0])
building_type_ids = target_vacancy_this_year.get_attribute('building_type_id')
building_type_idx = building_types.get_id_index(building_type_ids)
self.used_building_types = DatasetSubset(building_types, index=building_type_idx)
project_types = self.used_building_types.get_attribute('building_type_name')
is_residential = self.used_building_types.get_attribute('is_residential')
unit_names = where(is_residential, 'residential_units', 'non_residential_sqft')
specific_unit_names = where(is_residential, 'residential_units', '_sqft')
rates = target_vacancy_this_year.get_attribute('target_total_vacancy')
self.project_units = {}
self.project_specific_units = {}
target_rates = {}
for i in range(self.used_building_types.size()):
self.project_units[project_types[i]] = unit_names[i]
if is_residential[i]:
self.project_specific_units[project_types[i]] = specific_unit_names[i]
else:
self.project_specific_units[project_types[i]] = "%s%s" % (project_types[i], specific_unit_names[i])
target_rates[building_type_ids[i]] = rates[i]
self._compute_vacancy_and_total_units_variables(location_set, project_types, resources)
self.pre_check( location_set, target_vacancy_this_year, project_types)
projects = None
for project_type_id, target_vacancy_rate in target_rates.iteritems():
# determine current-year vacancy rates
project_type = building_types.get_attribute_by_id('building_type_name', project_type_id)
vacant_units_sum = location_set.get_attribute(self.variable_for_vacancy[project_type]).sum()
units_sum = float( location_set.get_attribute(self.variable_for_total_units[project_type]).sum() )
should_develop_units = int(round(max( 0, ( target_vacancy_rate * units_sum - vacant_units_sum ) /
( 1 - target_vacancy_rate ) )))
logger.log_status(project_type + ": vacant units: %d, should be vacant: %f, sum units: %d"
% (vacant_units_sum, target_vacancy_rate * units_sum, units_sum))
if not should_develop_units:
logger.log_note(("Will not build any " + project_type + " units, because the current vacancy of %d units\n"
+ "is more than the %d units desired for the vacancy rate of %f.")
% (vacant_units_sum,
target_vacancy_rate * units_sum,
target_vacancy_rate))
#create projects
if should_develop_units > 0:
this_project = self._create_projects(should_develop_units, project_type, project_type_id, history_table,
location_set, units_sum, resources)
if projects is None:
projects = this_project
else:
projects.join_by_rows(this_project, change_ids_if_not_unique=True)
return projects
示例7: run
def run( self, model_configuration, vacancy_table, history_table, year,
location_set, resources=None):
large_area_ids = vacancy_table.get_attribute("large_area_id")
locations_large_area_ids = location_set.compute_variables("washtenaw.%s.large_area_id" % location_set.get_dataset_name())
unique_large_areas = unique(large_area_ids)
self._compute_vacancy_variables(location_set,
model_configuration['development_project_types'],
resources)
projects = {}
for area in unique_large_areas:
location_index = where(locations_large_area_ids == area)[0]
locations_for_this_area = DatasetSubset(location_set, location_index)
logger.log_status("DPLCM for area %s", area)
target_residential_vacancy_rate, target_non_residential_vacancy_rate = self._get_target_vacancy_rates(vacancy_table, year, area)
for project_type in model_configuration['development_project_types']:
# determine current-year vacancy rates
vacant_units_sum = locations_for_this_area.get_attribute(self.variable_for_vacancy[project_type]).sum()
units_sum = float( locations_for_this_area.get_attribute(self.units_variable[project_type]).sum() )
vacant_rate = self.safe_divide(vacant_units_sum, units_sum)
if model_configuration['development_project_types'][project_type]['residential']:
target_vacancy_rate = target_residential_vacancy_rate
else:
target_vacancy_rate = target_non_residential_vacancy_rate
should_develop_units = int(round(max( 0, ( target_vacancy_rate * units_sum - vacant_units_sum ) /
( 1 - target_vacancy_rate ) )))
logger.log_status(project_type + ": vacant units: %d, should be vacant: %f, sum units: %d, will develop: %d"
% (vacant_units_sum, target_vacancy_rate * units_sum, units_sum, should_develop_units))
#create projects
if should_develop_units > 0:
project_dataset = self._create_projects(should_develop_units, project_type, history_table,
locations_for_this_area, units_sum,
model_configuration['development_project_types'],
resources)
project_dataset.add_attribute(array(project_dataset.size()*[area]), "large_area_id",
metadata=AttributeType.PRIMARY)
if (project_type not in projects.keys()) or (projects[project_type] is None):
projects[project_type] = project_dataset
else:
projects[project_type].join_by_rows(project_dataset, change_ids_if_not_unique=True)
for project_type in model_configuration['development_project_types']:
if project_type not in projects.keys():
projects[project_type] = None
if projects[project_type] is None:
size = 0
else:
projects[project_type].add_submodel_categories()
size = projects[project_type].size()
logger.log_status("%s %s projects to be built" % (size, project_type))
return projects
開發者ID:christianurich,項目名稱:VIBe2UrbanSim,代碼行數:51,代碼來源:regional_development_project_transition_model.py
示例8: run
def run(self, year, household_set, control_totals, characteristics, resources=None):
# self.person_set = person_set
self._do_initialize_for_run(household_set)
control_totals.get_attribute("total_number_of_households") # to make sure they are loaded
self.characteristics = characteristics
self.all_categories = self.characteristics.get_attribute("characteristic")
self.all_categories = array(map(lambda x: x.lower(), self.all_categories))
self.scaled_characteristic_names = get_distinct_names(self.all_categories).tolist()
self.marginal_characteristic_names = copy(control_totals.get_id_name())
index_year = self.marginal_characteristic_names.index("year")
self.marginal_characteristic_names.remove("year")
self.marginal_characteristic_names.remove(self.subarea_id_name)
region_ids = control_totals.get_attribute(self.subarea_id_name)
households_region_ids = household_set.compute_one_variable_with_unknown_package(variable_name="%s" % (self.subarea_id_name), dataset_pool=self.dataset_pool)
unique_regions = unique(region_ids)
is_year = control_totals.get_attribute("year")==year
all_households_index = arange(household_set.size())
for area in unique_regions:
idx = where(logical_and(is_year, region_ids == area))[0]
self.control_totals_for_this_year = DatasetSubset(control_totals, idx)
households_index = where(households_region_ids == area)[0]
if households_index.size == 0:
continue
households_for_this_area = DatasetSubset(household_set, households_index)
logger.log_status("HTM for area %s (currently %s households)" % (area, households_for_this_area.size()))
last_remove_idx = self.remove_households.size
last_new_hhs_idx = self.mapping_existing_hhs_to_new_hhs.size
self._do_run_for_this_year(households_for_this_area)
add_hhs_size = self.new_households[self.location_id_name].size-self.new_households[self.subarea_id_name].size+self.mapping_existing_hhs_to_new_hhs.size-last_new_hhs_idx
remove_hhs_size = self.remove_households.size-last_remove_idx
logger.log_status("add %s, remove %s, total %s" % (add_hhs_size, remove_hhs_size,
households_for_this_area.size()+add_hhs_size-remove_hhs_size
))
self.new_households[self.subarea_id_name] = concatenate((self.new_households[self.subarea_id_name],
array((self.new_households[self.location_id_name].size-self.new_households[self.subarea_id_name].size)*[area], dtype="int32")))
# transform indices of removing households into indices of the whole dataset
self.remove_households[last_remove_idx:self.remove_households.size] = all_households_index[households_index[self.remove_households[last_remove_idx:self.remove_households.size]]]
# do the same for households to be duplicated
self.mapping_existing_hhs_to_new_hhs[last_new_hhs_idx:self.mapping_existing_hhs_to_new_hhs.size] = all_households_index[households_index[self.mapping_existing_hhs_to_new_hhs[last_new_hhs_idx:self.mapping_existing_hhs_to_new_hhs.size]]]
self._update_household_set(household_set)
idx_new_households = arange(household_set.size()-self.new_households[self.subarea_id_name].size, household_set.size())
#household_region_ids = household_set.compute_variables("urbansim_parcel.household.%s" % self.subarea_id_name)
#household_region_ids[idx_new_households] = self.new_households[self.subarea_id_name]
region_ids = household_set.get_attribute(self.subarea_id_name).copy()
household_set.delete_one_attribute(self.subarea_id_name)
household_set.add_attribute(region_ids, self.subarea_id_name, metadata=AttributeType.PRIMARY)
# return an index of new households
return idx_new_households
示例9: run
def run(self, chunk_specification, dataset, dataset_index=None, result_array_type=float32, **kwargs):
""" 'chunk_specification' - determines number of chunks to use when computing over
the dataset set.
'dataset' - an object of class Dataset that is to be chunked.
'dataset_index' - index of individuals in dataset to be chunked.
'result_array_type' - type of the resulting array. Can be any numerical type of numpy array.
**kwargs - keyword arguments.
The method chunks dataset_index in the desired number of chunks (minimum is 1) and for each chunk it calls the method
'run_chunk'. The order of the individuals entering the chunking is determined by the method 'get_agents_order'.
"""
if dataset_index==None:
dataset_index=arange(dataset.size())
if not isinstance(dataset_index,ndarray):
dataset_index=array(dataset_index)
logger.log_status("Total number of individuals: %s" % dataset_index.size)
result_array = zeros(dataset_index.size, dtype=result_array_type)
if dataset_index.size <= 0:
logger.log_status("Nothing to be done.")
return result_array
all_indexed_individuals = DatasetSubset(dataset, dataset_index)
ordered_agent_indices = self.get_agents_order(all_indexed_individuals)# set order of individuals in chunks
# TODO: Remove next six lines after we inherit chunk specification as a text string.
if (chunk_specification is None):
chunk_specification = {'nchunks':1}
chunker = ChunkSpecification(chunk_specification)
self.number_of_chunks = chunker.nchunks(dataset_index)
chunksize = int(ceil(all_indexed_individuals.size()/float(self.number_of_chunks)))
for ichunk in range(self.number_of_chunks):
logger.start_block("%s chunk %d out of %d."
% (self.model_short_name, (ichunk+1), self.number_of_chunks))
self.index_of_current_chunk = ichunk
try:
chunk_agent_indices = ordered_agent_indices[arange((ichunk*chunksize),
min((ichunk+1)*chunksize,
all_indexed_individuals.size()))]
logger.log_status("Number of agents in this chunk: %s" % chunk_agent_indices.size)
result_array[chunk_agent_indices] = self.run_chunk(dataset_index[chunk_agent_indices],
dataset, **kwargs).astype(result_array_type)
finally:
logger.end_block()
return result_array
示例10: run
def run(self, agent_set, **kwargs):
large_areas = agent_set.get_attribute(self.large_area_id_name)
valid_large_area = where(large_areas > 0)[0]
if valid_large_area.size > 0:
unique_large_areas = unique(large_areas[valid_large_area])
cond_array = zeros(agent_set.size(), dtype="bool8")
cond_array[valid_large_area] = True
result = array([], dtype="int32")
for area in unique_large_areas:
new_index = where(logical_and(cond_array, large_areas == area))[0]
agent_subset = DatasetSubset(agent_set, new_index)
logger.log_status("ARM for area %s (%s agents)" % (area, agent_subset.size()))
this_result = AgentRelocationModel.run(self, agent_subset, **kwargs)
result = concatenate((result, new_index[this_result]))
no_large_area = where(large_areas <= 0)[0]
result = concatenate((result, no_large_area))
return result
示例11: _write_input_file_1
def _write_input_file_1(self, current_year_emme2_dir, input_dir, current_year, dataset_pool, config=None):
missing_dataset = ''
try:
missing_dataset = 'group_quarter'
taz_col_set = dataset_pool.get_dataset("group_quarter")
taz_col_set.load_dataset()
missing_dataset = 'zone'
zone_set = dataset_pool.get_dataset("zone")
zone_set.load_dataset()
missing_dataset = 'household'
household_set = dataset_pool.get_dataset("household")
except:
raise Exception("Dataset %s is missing from dataset_pool" % missing_dataset)
"""specify travel input file name """
if not os.path.exists(input_dir):
os.makedirs(input_dir)
tm_input_file = os.path.join(input_dir, 'tazdata.in')
tm_year = self._get_tm_year(current_year, taz_col_set)
logger.log_status("calculating entries for emme%s input file" % self.emme_version)
taz_col_set.compute_variables("zone_id=group_quarter.taz")
current_taz_col = DatasetSubset(taz_col_set, index=where(taz_col_set.get_attribute("year")==tm_year)[0])
current_taz_col._id_names = ['taz']
current_taz_col._create_id_mapping()
zone_set.join(current_taz_col, "gqdorm", join_attribute='zone_id')
zone_set.join(current_taz_col, "gqmil", join_attribute='zone_id')
zone_set.join(current_taz_col, "gqoth", join_attribute='zone_id')
zone_set.join(current_taz_col, "fteuniv", join_attribute='zone_id')
"""specify which variables are passing from urbansim to travel model; the order matters"""
variables_list = self.get_variables_list(dataset_pool)
zone_set.compute_variables(variables_list, dataset_pool=dataset_pool )
return self._write_to_file(zone_set, variables_list, tm_input_file, tm_year)
示例12: run
def run(self, year, household_set, control_totals, characteristics, resources=None):
self._do_initialize_for_run(household_set)
control_totals.get_attribute("total_number_of_households") # to make sure they are loaded
self.characteristics = characteristics
self.all_categories = self.characteristics.get_attribute("characteristic")
self.all_categories = array(map(lambda x: x.lower(), self.all_categories))
self.scaled_characteristic_names = get_distinct_names(self.all_categories).tolist()
self.marginal_characteristic_names = copy(control_totals.get_id_name())
index_year = self.marginal_characteristic_names.index("year")
self.marginal_characteristic_names.remove("year")
idx = where(control_totals.get_attribute("year")==year)[0]
self.control_totals_for_this_year = DatasetSubset(control_totals, idx)
self._do_run_for_this_year(household_set)
return self._update_household_set(household_set)
示例13: _do_run
def _do_run(self, location_set, agent_set, agents_index, data_objects=None, resources=None):
location_id_name = location_set.get_id_name()[0]
jobsubset = DatasetSubset(agent_set, agents_index)
if jobsubset.size() <= 0:
return array([], dtype='int32')
#unplace jobs
agent_set.set_values_of_one_attribute(location_id_name,
resize(array([-1.0]), jobsubset.size()), agents_index)
sector_ids = jobsubset.get_attribute("sector_id")
sectors = unique(sector_ids)
counts = ndimage_sum(ones((jobsubset.size(),)), labels=sector_ids.astype('int32'), index=sectors.astype('int32'))
if sectors.size <=1 :
counts = array([counts])
variables = map(lambda x: "number_of_jobs_of_sector_"+str(int(x)), sectors)
compute_variables = map(lambda var: self.variable_package + "." +
location_set.get_dataset_name()+ "." + var, variables)
if data_objects is not None:
self.dataset_pool.add_datasets_if_not_included(data_objects)
self.dataset_pool.add_datasets_if_not_included({agent_set.get_dataset_name():agent_set})
location_set.compute_variables(compute_variables, dataset_pool=self.dataset_pool)
if self.filter is None:
location_index = arange(location_set.size())
else:
filter_values = location_set.compute_variables([self.filter], dataset_pool=self.dataset_pool)
location_index = where(filter_values > 0)[0]
if location_index.size <= 0:
logger.log_status("No locations available. Nothing to be done.")
return array([])
location_subset = DatasetSubset(location_set, location_index)
i=0
for sector in sectors:
distr = location_subset.get_attribute(variables[i])
if ma.allclose(distr.sum(), 0):
uniform_prob = 1.0/distr.size
distr = resize(array([uniform_prob], dtype='float64'), distr.size)
logger.log_warning("Probabilities in scaling model for sector " + str(sector) + " sum to 0.0. Substituting uniform distribution!")
# random_sample = sample(location_set.get_attribute("grid_id"), k=int(counts[i]), \
# probabilities = distr)
distr = distr/float(distr.sum())
random_sample = probsample_replace(location_subset.get_id_attribute(), size=int(counts[i]),
prob_array=distr)
idx = where(sector_ids == sector)[0]
#modify job locations
agent_set.set_values_of_one_attribute(location_id_name, random_sample, agents_index[idx])
i+=1
return agent_set.get_attribute_by_index(location_id_name, agents_index)
示例14: run
def run(self, year=None,
dataset_pool=None, **kwargs):
"""
"""
if dataset_pool is None:
dataset_pool = SessionConfiguration().get_dataset_pool()
if year is None:
year = SimulationState().get_current_time()
this_year_index = where(self.scheduled_events.get_attribute('year')==year)[0]
scheduled_events_for_this_year = DatasetSubset(self.scheduled_events, this_year_index)
scheduled_events_for_this_year.load_dataset_if_not_loaded()
column_names = list(set( self.scheduled_events.get_known_attribute_names() ) - set( [ 'year', 'action', 'attribute', 'amount', 'event_id', '_hidden_id_'] ))
column_names.sort()
# column_values = dict([ (name, scheduled_events_for_this_year.get_attribute(name)) for name in column_names])
for index in range(scheduled_events_for_this_year.size()):
indicator = ones( self.dataset.size(), dtype='bool' )
event_attr = {}
for attribute in column_names:
if attribute in self.dataset.get_known_attribute_names():
dataset_attribute = self.dataset.get_attribute(attribute)
else:
## this is done inside the loop because some action may delete computed attributes, such as dataset.add_elements()
try:
dataset_attribute = self.dataset.compute_one_variable_with_unknown_package(attribute, dataset_pool=dataset_pool)
except:
raise ValueError, "attribute %s used in scheduled events dataset can not be found in dataset %s" % (attribute, self.dataset.get_dataset_name())
# if attribute in column_names:
aval = scheduled_events_for_this_year.get_attribute(attribute)[index]
if aval == -1:
continue # ignore if column value is -1
else:
indicator *= dataset_attribute == aval
event_attr.update({attribute:aval})
#agents in dataset satisfying all conditions are identified by indicator
legit_index = where(indicator)[0]
this_event = scheduled_events_for_this_year.get_data_element(index)
if not hasattr(this_event, 'attribute'):
action_attr_name = ''
else:
action_attr_name = this_event.attribute
action_function = getattr(self, '_' + this_event.action.strip().lower())
action_function( amount=this_event.amount,
attribute=action_attr_name,
dataset=self.dataset,
index=legit_index,
data_dict=event_attr )
self.post_run(self.dataset, legit_index, **kwargs)
return self.dataset
示例15: _convert_lccm_input
def _convert_lccm_input(self, flt_directory_in, flt_directory_out):
gc.collect()
t1 = time()
lc = LandCoverDataset(in_storage = StorageFactory().get_storage('flt_storage', storage_location = flt_directory_in),
out_storage = StorageFactory().get_storage('flt_storage', storage_location = flt_directory_out))
# lc.get_header() # added 23 june 2009 by mm
mask = lc.get_mask()
idx = where(mask==0)[0]
lcsubset = DatasetSubset(lc, idx)
print "Converting:"
lcsubset.write_dataset(attributes=["relative_x"], out_table_name="land_covers")
lc.delete_one_attribute("relative_x")
lcsubset.write_dataset(attributes=["relative_y"], out_table_name="land_covers")
lc.delete_one_attribute("relative_y")
lc.flush_dataset()
gc.collect()
# lc_names = lc.get_primary_attribute_names()
for attr in lc.get_primary_attribute_names():
print " ", attr
lcsubset.write_dataset(attributes=[attr], out_table_name="land_covers")
lc.delete_one_attribute(attr)
logger.log_status("Data conversion done. " + str(time()-t1) + " s")