本文整理匯總了Python中nupic.research.TP.TP.saveToFile方法的典型用法代碼示例。如果您正苦於以下問題:Python TP.saveToFile方法的具體用法?Python TP.saveToFile怎麽用?Python TP.saveToFile使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類nupic.research.TP.TP
的用法示例。
在下文中一共展示了TP.saveToFile方法的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: testCheckpointMiddleOfSequence
# 需要導入模塊: from nupic.research.TP import TP [as 別名]
# 或者: from nupic.research.TP.TP import saveToFile [as 別名]
def testCheckpointMiddleOfSequence(self):
# Create a model and give it some inputs to learn.
tp1 = TP(numberOfCols=100, cellsPerColumn=12, verbosity=VERBOSITY)
sequences = [self.generateSequence() for _ in xrange(5)]
train = list(itertools.chain.from_iterable(sequences[:3] +
[sequences[3][:5]]))
for bottomUpInput in train:
if bottomUpInput is None:
tp1.reset()
else:
tp1.compute(bottomUpInput, True, True)
# Serialize and deserialized the TP.
checkpointPath = os.path.join(self._tmpDir, 'a')
tp1.saveToFile(checkpointPath)
tp2 = pickle.loads(pickle.dumps(tp1))
tp2.loadFromFile(checkpointPath)
# Check that the TPs are the same.
self.assertTPsEqual(tp1, tp2)
# Feed some data into the models.
test = list(itertools.chain.from_iterable([sequences[3][5:]] +
sequences[3:]))
for bottomUpInput in test:
if bottomUpInput is None:
tp1.reset()
tp2.reset()
else:
result1 = tp1.compute(bottomUpInput, True, True)
result2 = tp2.compute(bottomUpInput, True, True)
self.assertTPsEqual(tp1, tp2)
self.assertTrue(numpy.array_equal(result1, result2))
示例2: testCheckpointMiddleOfSequence2
# 需要導入模塊: from nupic.research.TP import TP [as 別名]
# 或者: from nupic.research.TP.TP import saveToFile [as 別名]
def testCheckpointMiddleOfSequence2(self):
"""More complex test of checkpointing in the middle of a sequence."""
tp1 = TP(2048, 32, 0.21, 0.5, 11, 20, 0.1, 0.1, 1.0, 0.0, 14, False, 5, 2,
False, 1960, 0, False, '', 3, 10, 5, 0, 32, 128, 32, 'normal')
tp2 = TP(2048, 32, 0.21, 0.5, 11, 20, 0.1, 0.1, 1.0, 0.0, 14, False, 5, 2,
False, 1960, 0, False, '', 3, 10, 5, 0, 32, 128, 32, 'normal')
with resource_stream(__name__, 'data/tp_input.csv') as fin:
reader = csv.reader(fin)
records = []
for bottomUpInStr in fin:
bottomUpIn = numpy.array(eval('[' + bottomUpInStr.strip() + ']'),
dtype='int32')
records.append(bottomUpIn)
i = 1
for r in records[:250]:
print i
i += 1
output1 = tp1.compute(r, True, True)
output2 = tp2.compute(r, True, True)
self.assertTrue(numpy.array_equal(output1, output2))
print 'Serializing and deserializing models.'
savePath1 = os.path.join(self._tmpDir, 'tp1.bin')
tp1.saveToFile(savePath1)
tp3 = pickle.loads(pickle.dumps(tp1))
tp3.loadFromFile(savePath1)
savePath2 = os.path.join(self._tmpDir, 'tp2.bin')
tp2.saveToFile(savePath2)
tp4 = pickle.loads(pickle.dumps(tp2))
tp4.loadFromFile(savePath2)
self.assertTPsEqual(tp1, tp3)
self.assertTPsEqual(tp2, tp4)
for r in records[250:]:
print i
i += 1
out1 = tp1.compute(r, True, True)
out2 = tp2.compute(r, True, True)
out3 = tp3.compute(r, True, True)
out4 = tp4.compute(r, True, True)
self.assertTrue(numpy.array_equal(out1, out2))
self.assertTrue(numpy.array_equal(out1, out3))
self.assertTrue(numpy.array_equal(out1, out4))
self.assertTPsEqual(tp1, tp2)
self.assertTPsEqual(tp1, tp3)
self.assertTPsEqual(tp2, tp4)
示例3: Model
# 需要導入模塊: from nupic.research.TP import TP [as 別名]
# 或者: from nupic.research.TP.TP import saveToFile [as 別名]
class Model():
def __init__(self,
numberOfCols=16384, cellsPerColumn=8,
initialPerm=0.5, connectedPerm=0.5,
minThreshold=164, newSynapseCount=164,
permanenceInc=0.1, permanenceDec=0.0,
activationThreshold=164,
pamLength=10,
checkpointDir=None):
self.tp = TP(numberOfCols=numberOfCols, cellsPerColumn=cellsPerColumn,
initialPerm=initialPerm, connectedPerm=connectedPerm,
minThreshold=minThreshold, newSynapseCount=newSynapseCount,
permanenceInc=permanenceInc, permanenceDec=permanenceDec,
# 1/2 of the on bits = (16384 * .02) / 2
activationThreshold=activationThreshold,
globalDecay=0, burnIn=1,
#verbosity=3, # who knows what this does...
checkSynapseConsistency=False,
pamLength=pamLength)
self.checkpointDir = checkpointDir
self.checkpointPklPath = None
self.checkpointDataPath = None
self._initCheckpoint()
def _initCheckpoint(self):
if self.checkpointDir:
if not os.path.exists(self.checkpointDir):
os.makedirs(self.checkpointDir)
self.checkpointPklPath = self.checkpointDir + "/model.pkl"
self.checkpointDataPath = self.checkpointDir + "/model.data"
def canCheckpoint(self):
return self.checkpointDir != None
def hasCheckpoint(self):
return (os.path.exists(self.checkpointPklPath) and
os.path.exists(self.checkpointDataPath))
def load(self):
if not self.checkpointDir:
raise(Exception("No checkpoint directory specified"))
if not self.hasCheckpoint():
raise(Exception("Could not find checkpoint file"))
with open(self.checkpointPklPath, 'rb') as f:
self.tp = pickle.load(f)
self.tp.loadFromFile(self.checkpointDataPath)
def save(self):
if not self.checkpointDir:
raise(Exception("No checkpoint directory specified"))
self.tp.saveToFile(self.checkpointDataPath)
with open(self.checkpointPklPath, 'wb') as f:
pickle.dump(self.tp, f)
def feedTerm(self, term, learn=True):
""" Feed a Term to model, returning next predicted Term """
tp = self.tp
array = numpy.array(term.toArray(), dtype="uint32")
tp.resetStats()
tp.compute(array, enableLearn = learn, computeInfOutput = True)
#print "ret: " + repr(ret)
#if ret.all() == array.all():
# print "EQUAL to input"
ret = tp.getStats()
#ret = tp.printStates()
print "ret: " + repr(ret)
print
print
print "*****************************************"
predictedCells = tp.getPredictedState()
predictedColumns = predictedCells.max(axis=1)
predictedBitmap = predictedColumns.nonzero()[0].tolist()
return Term().createFromBitmap(predictedBitmap)
def resetSequence(self):
print "RESET"
self.tp.reset()