當前位置: 首頁>>代碼示例>>Python>>正文


Python TP.printStates方法代碼示例

本文整理匯總了Python中nupic.research.TP.TP.printStates方法的典型用法代碼示例。如果您正苦於以下問題:Python TP.printStates方法的具體用法?Python TP.printStates怎麽用?Python TP.printStates使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在nupic.research.TP.TP的用法示例。


在下文中一共展示了TP.printStates方法的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: main

# 需要導入模塊: from nupic.research.TP import TP [as 別名]
# 或者: from nupic.research.TP.TP import printStates [as 別名]
def main(SEED, VERBOSITY):
    # TP 作成
    tp = TP(
            numberOfCols          = 100,
            cellsPerColumn        = 1,
            initialPerm           = 0.3,
            connectedPerm         = 0.5,
            minThreshold          = 4,
            newSynapseCount       = 7,
            permanenceInc         = 0.1,
            permanenceDec         = 0.05,
            activationThreshold   = 5,
            globalDecay           = 0,
            burnIn                = 1,
            seed                  = SEED,
            verbosity             = VERBOSITY,
            checkSynapseConsistency  = True,
            pamLength                = 1000
            )

    print
    trainingSet = _getSimplePatterns(10, 10)
    for seq in trainingSet[0:5]:
        _printOneTrainingVector(seq)


    # TP學習
    print
    print 'Learning 1 ... A->A->A'
    for _ in range(2):
        for seq in trainingSet[0:5]:
            for _ in range(10):
                #tp.learn(seq)
                tp.compute(seq, enableLearn = True, computeInfOutput=False)
            tp.reset()

    print
    print 'Learning 2 ... A->B->C'
    for _ in range(10):
        for seq in trainingSet[0:5]:
            tp.compute(seq, enableLearn = True, computeInfOutput=False)
        tp.reset()


    # TP 予測
    # Learning 1のみだと, A->Aを出力するのみだが,
    # その後, Learning 2もやると, A->A,Bを出力するようになる. 
    print
    print 'Running inference'
    for seq in trainingSet[0:5]:
        # tp.reset()
        # tp.resetStats()
        tp.compute(seq, enableLearn = False, computeInfOutput = True)
        tp.printStates(False, False)
開發者ID:,項目名稱:,代碼行數:56,代碼來源:

示例2: basicTest2

# 需要導入模塊: from nupic.research.TP import TP [as 別名]
# 或者: from nupic.research.TP.TP import printStates [as 別名]
  def basicTest2(self, tp, numPatterns=100, numRepetitions=3, activity=15,
                 testTrimming=False, testRebuild=False):
    """Basic test (basic run of learning and inference)"""
    # Create PY TP object that mirrors the one sent in.
    tpPy = TP(numberOfCols=tp.numberOfCols, cellsPerColumn=tp.cellsPerColumn,
              initialPerm=tp.initialPerm, connectedPerm=tp.connectedPerm,
              minThreshold=tp.minThreshold, newSynapseCount=tp.newSynapseCount,
              permanenceInc=tp.permanenceInc, permanenceDec=tp.permanenceDec,
              permanenceMax=tp.permanenceMax, globalDecay=tp.globalDecay,
              activationThreshold=tp.activationThreshold,
              doPooling=tp.doPooling,
              segUpdateValidDuration=tp.segUpdateValidDuration,
              pamLength=tp.pamLength, maxAge=tp.maxAge,
              maxSeqLength=tp.maxSeqLength,
              maxSegmentsPerCell=tp.maxSegmentsPerCell,
              maxSynapsesPerSegment=tp.maxSynapsesPerSegment,
              seed=tp.seed, verbosity=tp.verbosity)

    # Ensure we are copying over learning states for TPDiff
    tp.retrieveLearningStates = True

    verbosity = VERBOSITY

    # Learn

    # Build up sequences
    sequence = fdrutils.generateCoincMatrix(nCoinc=numPatterns,
                                            length=tp.numberOfCols,
                                            activity=activity)
    for r in xrange(numRepetitions):
      for i in xrange(sequence.nRows()):

        #if i > 11:
        #  setVerbosity(6, tp, tpPy)

        if i % 10 == 0:
          tp.reset()
          tpPy.reset()

        if verbosity >= 2:
          print "\n\n    ===================================\nPattern:",
          print i, "Round:", r, "input:", sequence.getRow(i)

        y1 = tp.learn(sequence.getRow(i))
        y2 = tpPy.learn(sequence.getRow(i))

        # Ensure everything continues to work well even if we continuously
        # rebuild outSynapses structure
        if testRebuild:
          tp.cells4.rebuildOutSynapses()

        if testTrimming:
          tp.trimSegments()
          tpPy.trimSegments()

        if verbosity > 2:
          print "\n   ------  CPP states  ------ ",
          tp.printStates()
          print "\n   ------  PY states  ------ ",
          tpPy.printStates()
          if verbosity > 6:
            print "C++ cells: "
            tp.printCells()
            print "PY cells: "
            tpPy.printCells()

        if verbosity >= 3:
          print "Num segments in PY and C++", tpPy.getNumSegments(), \
              tp.getNumSegments()

        # Check if the two TP's are identical or not. This check is slow so
        # we do it every other iteration. Make it every iteration for debugging
        # as needed.
        self.assertTrue(fdrutils.tpDiff2(tp, tpPy, verbosity, False))

        # Check that outputs are identical
        self.assertLess(abs((y1 - y2).sum()), 3)

    print "Learning completed"

    self.assertTrue(fdrutils.tpDiff2(tp, tpPy, verbosity))

    # TODO: Need to check - currently failing this
    #checkCell0(tpPy)

    # Remove unconnected synapses and check TP's again

    # Test rebuild out synapses
    print "Rebuilding outSynapses"
    tp.cells4.rebuildOutSynapses()
    self.assertTrue(fdrutils.tpDiff2(tp, tpPy, VERBOSITY))

    print "Trimming segments"
    tp.trimSegments()
    tpPy.trimSegments()
    self.assertTrue(fdrutils.tpDiff2(tp, tpPy, VERBOSITY))

    # Save and reload after learning
    print "Pickling and unpickling"
    tp.makeCells4Ephemeral = False
#.........這裏部分代碼省略.........
開發者ID:0x0all,項目名稱:nupic,代碼行數:103,代碼來源:tp10x2_test.py

示例3: formatRow

# 需要導入模塊: from nupic.research.TP import TP [as 別名]
# 或者: from nupic.research.TP.TP import printStates [as 別名]
for note in encoded_list:
    print "Raw input vector\n", formatRow(note)

    # Send each vector to the TP, with learning turned off
    tp.compute(note, enableLearn=False, computeInfOutput=True)

    # This method prints out the active state of each cell followed by the
    # predicted state of each cell. For convenience the cells are grouped
    # 10 at a time. When there are multiple cells per column the printout
    # is arranged so the cells in a column are stacked together
    #
    # What you should notice is that the columns where active state is 1
    # represent the SDR for the current input pattern and the columns where
    # predicted state is 1 represent the SDR for the next expected pattern
    print "\nAll the active and predicted cells:"
    tp.printStates(printPrevious=False, printLearnState=False)

    # tp.getPredictedState() gets the predicted cells.
    # predictedCells[c][i] represents the state of the i'th cell in the c'th
    # column. To see if a column is predicted, we can simply take the OR
    # across all the cells in that column. In numpy we can do this by taking
    # the max along axis 1.
    print "\n\nThe following columns are predicted by the temporal pooler. This"
    print "should correspond to columns in the *next* item in the sequence."
    predictedCells = tp.getPredictedState()
    print formatRow(predictedCells.max(axis=1).nonzero())


# In[ ]:

開發者ID:cchio,項目名稱:nupic-fall2014-music-composer-fingerprinting,代碼行數:31,代碼來源:composer_finder_temp.py


注:本文中的nupic.research.TP.TP.printStates方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。