當前位置: 首頁>>代碼示例>>Python>>正文


Python TP.reset方法代碼示例

本文整理匯總了Python中nupic.research.TP.TP.reset方法的典型用法代碼示例。如果您正苦於以下問題:Python TP.reset方法的具體用法?Python TP.reset怎麽用?Python TP.reset使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在nupic.research.TP.TP的用法示例。


在下文中一共展示了TP.reset方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: testCheckpointMiddleOfSequence

# 需要導入模塊: from nupic.research.TP import TP [as 別名]
# 或者: from nupic.research.TP.TP import reset [as 別名]
  def testCheckpointMiddleOfSequence(self):
    # Create a model and give it some inputs to learn.
    tp1 = TP(numberOfCols=100, cellsPerColumn=12, verbosity=VERBOSITY)
    sequences = [self.generateSequence() for _ in xrange(5)]
    train = list(itertools.chain.from_iterable(sequences[:3] +
                                               [sequences[3][:5]]))
    for bottomUpInput in train:
      if bottomUpInput is None:
        tp1.reset()
      else:
        tp1.compute(bottomUpInput, True, True)

    # Serialize and deserialized the TP.
    checkpointPath = os.path.join(self._tmpDir, 'a')
    tp1.saveToFile(checkpointPath)
    tp2 = pickle.loads(pickle.dumps(tp1))
    tp2.loadFromFile(checkpointPath)

    # Check that the TPs are the same.
    self.assertTPsEqual(tp1, tp2)

    # Feed some data into the models.
    test = list(itertools.chain.from_iterable([sequences[3][5:]] +
                                              sequences[3:]))
    for bottomUpInput in test:
      if bottomUpInput is None:
        tp1.reset()
        tp2.reset()
      else:
        result1 = tp1.compute(bottomUpInput, True, True)
        result2 = tp2.compute(bottomUpInput, True, True)

        self.assertTPsEqual(tp1, tp2)
        self.assertTrue(numpy.array_equal(result1, result2))
開發者ID:AndreCAndersen,項目名稱:nupic,代碼行數:36,代碼來源:tp_test.py

示例2: reset

# 需要導入模塊: from nupic.research.TP import TP [as 別名]
# 或者: from nupic.research.TP.TP import reset [as 別名]
 def reset(self):
   """ Reset the state of all cells.
   This is normally used between sequences while training. All internal states
   are reset to 0.
   """
   if self.verbosity >= 3:
     print "TP Reset"
   self._setStatePointers()
   self.cells4.reset()
   TP.reset(self)
開發者ID:ARK1988,項目名稱:nupic,代碼行數:12,代碼來源:TP10X2.py

示例3: main

# 需要導入模塊: from nupic.research.TP import TP [as 別名]
# 或者: from nupic.research.TP.TP import reset [as 別名]
def main(SEED, VERBOSITY):
    # TP 作成
    tp = TP(
            numberOfCols          = 100,
            cellsPerColumn        = 1,
            initialPerm           = 0.3,
            connectedPerm         = 0.5,
            minThreshold          = 4,
            newSynapseCount       = 7,
            permanenceInc         = 0.1,
            permanenceDec         = 0.05,
            activationThreshold   = 5,
            globalDecay           = 0,
            burnIn                = 1,
            seed                  = SEED,
            verbosity             = VERBOSITY,
            checkSynapseConsistency  = True,
            pamLength                = 1000
            )

    print
    trainingSet = _getSimplePatterns(10, 10)
    for seq in trainingSet[0:5]:
        _printOneTrainingVector(seq)


    # TP學習
    print
    print 'Learning 1 ... A->A->A'
    for _ in range(2):
        for seq in trainingSet[0:5]:
            for _ in range(10):
                #tp.learn(seq)
                tp.compute(seq, enableLearn = True, computeInfOutput=False)
            tp.reset()

    print
    print 'Learning 2 ... A->B->C'
    for _ in range(10):
        for seq in trainingSet[0:5]:
            tp.compute(seq, enableLearn = True, computeInfOutput=False)
        tp.reset()


    # TP 予測
    # Learning 1のみだと, A->Aを出力するのみだが,
    # その後, Learning 2もやると, A->A,Bを出力するようになる. 
    print
    print 'Running inference'
    for seq in trainingSet[0:5]:
        # tp.reset()
        # tp.resetStats()
        tp.compute(seq, enableLearn = False, computeInfOutput = True)
        tp.printStates(False, False)
開發者ID:,項目名稱:,代碼行數:56,代碼來源:

示例4: basicTest2

# 需要導入模塊: from nupic.research.TP import TP [as 別名]
# 或者: from nupic.research.TP.TP import reset [as 別名]
  def basicTest2(self, tp, numPatterns=100, numRepetitions=3, activity=15,
                 testTrimming=False, testRebuild=False):
    """Basic test (basic run of learning and inference)"""
    # Create PY TP object that mirrors the one sent in.
    tpPy = TP(numberOfCols=tp.numberOfCols, cellsPerColumn=tp.cellsPerColumn,
              initialPerm=tp.initialPerm, connectedPerm=tp.connectedPerm,
              minThreshold=tp.minThreshold, newSynapseCount=tp.newSynapseCount,
              permanenceInc=tp.permanenceInc, permanenceDec=tp.permanenceDec,
              permanenceMax=tp.permanenceMax, globalDecay=tp.globalDecay,
              activationThreshold=tp.activationThreshold,
              doPooling=tp.doPooling,
              segUpdateValidDuration=tp.segUpdateValidDuration,
              pamLength=tp.pamLength, maxAge=tp.maxAge,
              maxSeqLength=tp.maxSeqLength,
              maxSegmentsPerCell=tp.maxSegmentsPerCell,
              maxSynapsesPerSegment=tp.maxSynapsesPerSegment,
              seed=tp.seed, verbosity=tp.verbosity)

    # Ensure we are copying over learning states for TPDiff
    tp.retrieveLearningStates = True

    verbosity = VERBOSITY

    # Learn

    # Build up sequences
    sequence = fdrutils.generateCoincMatrix(nCoinc=numPatterns,
                                            length=tp.numberOfCols,
                                            activity=activity)
    for r in xrange(numRepetitions):
      for i in xrange(sequence.nRows()):

        #if i > 11:
        #  setVerbosity(6, tp, tpPy)

        if i % 10 == 0:
          tp.reset()
          tpPy.reset()

        if verbosity >= 2:
          print "\n\n    ===================================\nPattern:",
          print i, "Round:", r, "input:", sequence.getRow(i)

        y1 = tp.learn(sequence.getRow(i))
        y2 = tpPy.learn(sequence.getRow(i))

        # Ensure everything continues to work well even if we continuously
        # rebuild outSynapses structure
        if testRebuild:
          tp.cells4.rebuildOutSynapses()

        if testTrimming:
          tp.trimSegments()
          tpPy.trimSegments()

        if verbosity > 2:
          print "\n   ------  CPP states  ------ ",
          tp.printStates()
          print "\n   ------  PY states  ------ ",
          tpPy.printStates()
          if verbosity > 6:
            print "C++ cells: "
            tp.printCells()
            print "PY cells: "
            tpPy.printCells()

        if verbosity >= 3:
          print "Num segments in PY and C++", tpPy.getNumSegments(), \
              tp.getNumSegments()

        # Check if the two TP's are identical or not. This check is slow so
        # we do it every other iteration. Make it every iteration for debugging
        # as needed.
        self.assertTrue(fdrutils.tpDiff2(tp, tpPy, verbosity, False))

        # Check that outputs are identical
        self.assertLess(abs((y1 - y2).sum()), 3)

    print "Learning completed"

    self.assertTrue(fdrutils.tpDiff2(tp, tpPy, verbosity))

    # TODO: Need to check - currently failing this
    #checkCell0(tpPy)

    # Remove unconnected synapses and check TP's again

    # Test rebuild out synapses
    print "Rebuilding outSynapses"
    tp.cells4.rebuildOutSynapses()
    self.assertTrue(fdrutils.tpDiff2(tp, tpPy, VERBOSITY))

    print "Trimming segments"
    tp.trimSegments()
    tpPy.trimSegments()
    self.assertTrue(fdrutils.tpDiff2(tp, tpPy, VERBOSITY))

    # Save and reload after learning
    print "Pickling and unpickling"
    tp.makeCells4Ephemeral = False
#.........這裏部分代碼省略.........
開發者ID:0x0all,項目名稱:nupic,代碼行數:103,代碼來源:tp10x2_test.py

示例5: reset

# 需要導入模塊: from nupic.research.TP import TP [as 別名]
# 或者: from nupic.research.TP.TP import reset [as 別名]
 def reset(self):
   """ Reset the state of all cells.
   This is normally used between sequences while training. All internal states
   are reset to 0.
   """
   TP.reset(self)
開發者ID:AndreCAndersen,項目名稱:nupic,代碼行數:8,代碼來源:TPTrivial.py

示例6: int

# 需要導入模塊: from nupic.research.TP import TP [as 別名]
# 或者: from nupic.research.TP.TP import reset [as 別名]
	encoded = enc.encode(decibel)

	# Add our encoded representation to the temporal pooler.

	tp.compute(encoded, enableLearn = True, computeInfOutput = True)

	# For the curious:
	#tp.printCells()
	#tp.printStates(printPrevious=False, printLearnState=False)

	predictedCells = tp.getPredictedState()

	decval = 0
	if predictedCells.any():
		decval = predictedCells.max(axis=1).nonzero()[0][-1]

		# This is more correct, but seems wonky...
		#decval =  int(enc.decode(predictedCells.max(axis=1).
		#nonzero()[0])[0]["[0:100]"][0][0][1])

	print "%-48s %48s" % (colored(("*"*(decibel/2))[:38],"green"),
							colored(("#"*(decval))[:38],"red"))

	if b >= 20:
		b = 0

		# If we have enough samples, reset the encoder to help it learn.
		tp.reset()

		print " "*35, "RESET!"
開發者ID:jeffk,項目名稱:pytexas-nupic,代碼行數:32,代碼來源:volume.py

示例7: Model

# 需要導入模塊: from nupic.research.TP import TP [as 別名]
# 或者: from nupic.research.TP.TP import reset [as 別名]
class Model():


  def __init__(self,
               numberOfCols=16384, cellsPerColumn=8,
                initialPerm=0.5, connectedPerm=0.5,
                minThreshold=164, newSynapseCount=164,
                permanenceInc=0.1, permanenceDec=0.0,
                activationThreshold=164,
                pamLength=10,
                checkpointDir=None):

    self.tp = TP(numberOfCols=numberOfCols, cellsPerColumn=cellsPerColumn,
                initialPerm=initialPerm, connectedPerm=connectedPerm,
                minThreshold=minThreshold, newSynapseCount=newSynapseCount,
                permanenceInc=permanenceInc, permanenceDec=permanenceDec,
                
                # 1/2 of the on bits = (16384 * .02) / 2
                activationThreshold=activationThreshold,
                globalDecay=0, burnIn=1,
                #verbosity=3,  # who knows what this does...
                checkSynapseConsistency=False,
                pamLength=pamLength)

    self.checkpointDir = checkpointDir
    self.checkpointPklPath = None
    self.checkpointDataPath = None
    self._initCheckpoint()


  def _initCheckpoint(self):
    if self.checkpointDir:
      if not os.path.exists(self.checkpointDir):
        os.makedirs(self.checkpointDir)

      self.checkpointPklPath = self.checkpointDir + "/model.pkl"
      self.checkpointDataPath = self.checkpointDir + "/model.data"


  def canCheckpoint(self):
    return self.checkpointDir != None


  def hasCheckpoint(self):
    return (os.path.exists(self.checkpointPklPath) and
            os.path.exists(self.checkpointDataPath))


  def load(self):
    if not self.checkpointDir:
      raise(Exception("No checkpoint directory specified"))

    if not self.hasCheckpoint():
      raise(Exception("Could not find checkpoint file"))
      
    with open(self.checkpointPklPath, 'rb') as f:
      self.tp = pickle.load(f)

    self.tp.loadFromFile(self.checkpointDataPath)


  def save(self):
    if not self.checkpointDir:
      raise(Exception("No checkpoint directory specified"))

    self.tp.saveToFile(self.checkpointDataPath)

    with open(self.checkpointPklPath, 'wb') as f:
      pickle.dump(self.tp, f)


  def feedTerm(self, term, learn=True):
    """ Feed a Term to model, returning next predicted Term """
    tp = self.tp
    array = numpy.array(term.toArray(), dtype="uint32")
    tp.resetStats()
    tp.compute(array, enableLearn = learn, computeInfOutput = True)
    #print "ret:  " + repr(ret)
    #if ret.all() == array.all():
    #  print "EQUAL to input"
    ret = tp.getStats()
    #ret = tp.printStates()

    print "ret: " + repr(ret)
    print
    print
    print "*****************************************"

    predictedCells = tp.getPredictedState()
    predictedColumns = predictedCells.max(axis=1)
    
    predictedBitmap = predictedColumns.nonzero()[0].tolist()
    return Term().createFromBitmap(predictedBitmap)
  

  def resetSequence(self):
    print "RESET"
    self.tp.reset()
開發者ID:moorejpdx,項目名稱:nupic.experiments,代碼行數:100,代碼來源:model.py


注:本文中的nupic.research.TP.TP.reset方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。