當前位置: 首頁>>代碼示例>>Python>>正文


Python TP.TP類代碼示例

本文整理匯總了Python中nupic.research.TP.TP的典型用法代碼示例。如果您正苦於以下問題:Python TP類的具體用法?Python TP怎麽用?Python TP使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。


在下文中一共展示了TP類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

  def __init__(self,
               numberOfCols =500,
               burnIn =2,             # Used for evaluating the prediction score
               collectStats =False,   # If true, collect training and inference stats
               seed =42,
               verbosity =VERBOSITY,
               predictionMethod = 'random',  # "random" or "zeroth"
               **kwargs
               ):

    # Init the base class
    TP.__init__(self,
               numberOfCols = numberOfCols,
               cellsPerColumn = 1,
               burnIn = burnIn,
               collectStats = collectStats,
               seed = seed,
               verbosity = verbosity)

    self.predictionMethod = predictionMethod

    #---------------------------------------------------------------------------------
    # Create basic data structures for keeping track of column statistics

    # Number of times each column has been active during learning
    self.columnCount = numpy.zeros(numberOfCols, dtype="int32")

    # Running average of input density
    self.averageDensity = 0.05
開發者ID:AndreCAndersen,項目名稱:nupic,代碼行數:29,代碼來源:TPTrivial.py

示例2: testCheckpointMiddleOfSequence

  def testCheckpointMiddleOfSequence(self):
    # Create a model and give it some inputs to learn.
    tp1 = TP(numberOfCols=100, cellsPerColumn=12, verbosity=VERBOSITY)
    sequences = [self.generateSequence() for _ in xrange(5)]
    train = list(itertools.chain.from_iterable(sequences[:3] +
                                               [sequences[3][:5]]))
    for bottomUpInput in train:
      if bottomUpInput is None:
        tp1.reset()
      else:
        tp1.compute(bottomUpInput, True, True)

    # Serialize and deserialized the TP.
    checkpointPath = os.path.join(self._tmpDir, 'a')
    tp1.saveToFile(checkpointPath)
    tp2 = pickle.loads(pickle.dumps(tp1))
    tp2.loadFromFile(checkpointPath)

    # Check that the TPs are the same.
    self.assertTPsEqual(tp1, tp2)

    # Feed some data into the models.
    test = list(itertools.chain.from_iterable([sequences[3][5:]] +
                                              sequences[3:]))
    for bottomUpInput in test:
      if bottomUpInput is None:
        tp1.reset()
        tp2.reset()
      else:
        result1 = tp1.compute(bottomUpInput, True, True)
        result2 = tp2.compute(bottomUpInput, True, True)

        self.assertTPsEqual(tp1, tp2)
        self.assertTrue(numpy.array_equal(result1, result2))
開發者ID:AndreCAndersen,項目名稱:nupic,代碼行數:34,代碼來源:tp_test.py

示例3: reset

 def reset(self):
   """ Reset the state of all cells.
   This is normally used between sequences while training. All internal states
   are reset to 0.
   """
   if self.verbosity >= 3:
     print "TP Reset"
   self._setStatePointers()
   self.cells4.reset()
   TP.reset(self)
開發者ID:ARK1988,項目名稱:nupic,代碼行數:10,代碼來源:TP10X2.py

示例4: testCheckpointMiddleOfSequence2

  def testCheckpointMiddleOfSequence2(self):
    """More complex test of checkpointing in the middle of a sequence."""
    tp1 = TP(2048, 32, 0.21, 0.5, 11, 20, 0.1, 0.1, 1.0, 0.0, 14, False, 5, 2,
             False, 1960, 0, False, '', 3, 10, 5, 0, 32, 128, 32, 'normal')
    tp2 = TP(2048, 32, 0.21, 0.5, 11, 20, 0.1, 0.1, 1.0, 0.0, 14, False, 5, 2,
             False, 1960, 0, False, '', 3, 10, 5, 0, 32, 128, 32, 'normal')

    with resource_stream(__name__, 'data/tp_input.csv') as fin:
      reader = csv.reader(fin)
      records = []
      for bottomUpInStr in fin:
        bottomUpIn = numpy.array(eval('[' + bottomUpInStr.strip() + ']'),
                                 dtype='int32')
        records.append(bottomUpIn)

    i = 1
    for r in records[:250]:
      print i
      i += 1
      output1 = tp1.compute(r, True, True)
      output2 = tp2.compute(r, True, True)
      self.assertTrue(numpy.array_equal(output1, output2))

    print 'Serializing and deserializing models.'

    savePath1 = os.path.join(self._tmpDir, 'tp1.bin')
    tp1.saveToFile(savePath1)
    tp3 = pickle.loads(pickle.dumps(tp1))
    tp3.loadFromFile(savePath1)

    savePath2 = os.path.join(self._tmpDir, 'tp2.bin')
    tp2.saveToFile(savePath2)
    tp4 = pickle.loads(pickle.dumps(tp2))
    tp4.loadFromFile(savePath2)

    self.assertTPsEqual(tp1, tp3)
    self.assertTPsEqual(tp2, tp4)

    for r in records[250:]:
      print i
      i += 1
      out1 = tp1.compute(r, True, True)
      out2 = tp2.compute(r, True, True)
      out3 = tp3.compute(r, True, True)
      out4 = tp4.compute(r, True, True)

      self.assertTrue(numpy.array_equal(out1, out2))
      self.assertTrue(numpy.array_equal(out1, out3))
      self.assertTrue(numpy.array_equal(out1, out4))

    self.assertTPsEqual(tp1, tp2)
    self.assertTPsEqual(tp1, tp3)
    self.assertTPsEqual(tp2, tp4)
開發者ID:AndreCAndersen,項目名稱:nupic,代碼行數:53,代碼來源:tp_test.py

示例5: __init__

  def __init__(self,
               numberOfCols=16384, cellsPerColumn=8,
                initialPerm=0.5, connectedPerm=0.5,
                minThreshold=164, newSynapseCount=164,
                permanenceInc=0.1, permanenceDec=0.0,
                activationThreshold=164,
                pamLength=10,
                checkpointDir=None):

    self.tp = TP(numberOfCols=numberOfCols, cellsPerColumn=cellsPerColumn,
                initialPerm=initialPerm, connectedPerm=connectedPerm,
                minThreshold=minThreshold, newSynapseCount=newSynapseCount,
                permanenceInc=permanenceInc, permanenceDec=permanenceDec,
                
                # 1/2 of the on bits = (16384 * .02) / 2
                activationThreshold=activationThreshold,
                globalDecay=0, burnIn=1,
                #verbosity=3,  # who knows what this does...
                checkSynapseConsistency=False,
                pamLength=pamLength)

    self.checkpointDir = checkpointDir
    self.checkpointPklPath = None
    self.checkpointDataPath = None
    self._initCheckpoint()
開發者ID:moorejpdx,項目名稱:nupic.experiments,代碼行數:25,代碼來源:model.py

示例6: _initEphemerals

    def _initEphemerals(self):
        """
    Initialize all ephemeral members after being restored to a pickled state.
    """
        TP._initEphemerals(self)
        # ---------------------------------------------------------------------------------
        # cells4 specific initialization

        # If True, let C++ allocate memory for activeState, predictedState, and
        # learnState. In this case we can retrieve copies of these states but can't
        # set them directly from Python. If False, Python can allocate them as
        # numpy arrays and we can pass pointers to the C++ using setStatePointers
        self.allocateStatesInCPP = False

        # Set this to true for debugging or accessing learning states
        self.retrieveLearningStates = False

        if self.makeCells4Ephemeral:
            self.cells4 = Cells4(
                self.numberOfCols,
                self.cellsPerColumn,
                self.activationThreshold,
                self.minThreshold,
                self.newSynapseCount,
                self.segUpdateValidDuration,
                self.initialPerm,
                self.connectedPerm,
                self.permanenceMax,
                self.permanenceDec,
                self.permanenceInc,
                self.globalDecay,
                self.doPooling,
                self.seed,
                self.allocateStatesInCPP,
                self.checkSynapseConsistency,
            )

            self.cells4.setVerbosity(self.verbosity)
            self.cells4.setPamLength(self.pamLength)
            self.cells4.setMaxAge(self.maxAge)
            self.cells4.setMaxInfBacktrack(self.maxInfBacktrack)
            self.cells4.setMaxLrnBacktrack(self.maxLrnBacktrack)
            self.cells4.setMaxSeqLength(self.maxSeqLength)
            self.cells4.setMaxSegmentsPerCell(self.maxSegmentsPerCell)
            self.cells4.setMaxSynapsesPerCell(self.maxSynapsesPerSegment)

            self._setStatePointers()
開發者ID:,項目名稱:,代碼行數:47,代碼來源:

示例7: _getEphemeralMembers

 def _getEphemeralMembers(self):
   """
   List of our member variables that we don't need to be saved
   """
   e = TP._getEphemeralMembers(self)
   if self.makeCells4Ephemeral:
     e.extend(['cells4'])
   return e
開發者ID:ARK1988,項目名稱:nupic,代碼行數:8,代碼來源:TP10X2.py

示例8: basicTest2

  def basicTest2(self, tp, numPatterns=100, numRepetitions=3, activity=15,
                 testTrimming=False, testRebuild=False):
    """Basic test (basic run of learning and inference)"""
    # Create PY TP object that mirrors the one sent in.
    tpPy = TP(numberOfCols=tp.numberOfCols, cellsPerColumn=tp.cellsPerColumn,
              initialPerm=tp.initialPerm, connectedPerm=tp.connectedPerm,
              minThreshold=tp.minThreshold, newSynapseCount=tp.newSynapseCount,
              permanenceInc=tp.permanenceInc, permanenceDec=tp.permanenceDec,
              permanenceMax=tp.permanenceMax, globalDecay=tp.globalDecay,
              activationThreshold=tp.activationThreshold,
              doPooling=tp.doPooling,
              segUpdateValidDuration=tp.segUpdateValidDuration,
              pamLength=tp.pamLength, maxAge=tp.maxAge,
              maxSeqLength=tp.maxSeqLength,
              maxSegmentsPerCell=tp.maxSegmentsPerCell,
              maxSynapsesPerSegment=tp.maxSynapsesPerSegment,
              seed=tp.seed, verbosity=tp.verbosity)

    # Ensure we are copying over learning states for TPDiff
    tp.retrieveLearningStates = True

    verbosity = VERBOSITY

    # Learn

    # Build up sequences
    sequence = fdrutils.generateCoincMatrix(nCoinc=numPatterns,
                                            length=tp.numberOfCols,
                                            activity=activity)
    for r in xrange(numRepetitions):
      for i in xrange(sequence.nRows()):

        #if i > 11:
        #  setVerbosity(6, tp, tpPy)

        if i % 10 == 0:
          tp.reset()
          tpPy.reset()

        if verbosity >= 2:
          print "\n\n    ===================================\nPattern:",
          print i, "Round:", r, "input:", sequence.getRow(i)

        y1 = tp.learn(sequence.getRow(i))
        y2 = tpPy.learn(sequence.getRow(i))

        # Ensure everything continues to work well even if we continuously
        # rebuild outSynapses structure
        if testRebuild:
          tp.cells4.rebuildOutSynapses()

        if testTrimming:
          tp.trimSegments()
          tpPy.trimSegments()

        if verbosity > 2:
          print "\n   ------  CPP states  ------ ",
          tp.printStates()
          print "\n   ------  PY states  ------ ",
          tpPy.printStates()
          if verbosity > 6:
            print "C++ cells: "
            tp.printCells()
            print "PY cells: "
            tpPy.printCells()

        if verbosity >= 3:
          print "Num segments in PY and C++", tpPy.getNumSegments(), \
              tp.getNumSegments()

        # Check if the two TP's are identical or not. This check is slow so
        # we do it every other iteration. Make it every iteration for debugging
        # as needed.
        self.assertTrue(fdrutils.tpDiff2(tp, tpPy, verbosity, False))

        # Check that outputs are identical
        self.assertLess(abs((y1 - y2).sum()), 3)

    print "Learning completed"

    self.assertTrue(fdrutils.tpDiff2(tp, tpPy, verbosity))

    # TODO: Need to check - currently failing this
    #checkCell0(tpPy)

    # Remove unconnected synapses and check TP's again

    # Test rebuild out synapses
    print "Rebuilding outSynapses"
    tp.cells4.rebuildOutSynapses()
    self.assertTrue(fdrutils.tpDiff2(tp, tpPy, VERBOSITY))

    print "Trimming segments"
    tp.trimSegments()
    tpPy.trimSegments()
    self.assertTrue(fdrutils.tpDiff2(tp, tpPy, VERBOSITY))

    # Save and reload after learning
    print "Pickling and unpickling"
    tp.makeCells4Ephemeral = False
#.........這裏部分代碼省略.........
開發者ID:0x0all,項目名稱:nupic,代碼行數:101,代碼來源:tp10x2_test.py

示例9: __init__

  def __init__(self,
               numberOfCols = 500,
               cellsPerColumn = 10,
               initialPerm = 0.11, # TODO: check perm numbers with Ron
               connectedPerm = 0.50,
               minThreshold = 8,
               newSynapseCount = 15,
               permanenceInc = 0.10,
               permanenceDec = 0.10,
               permanenceMax = 1.0, # never exceed this value
               globalDecay = 0.10,
               activationThreshold = 12, # 3/4 of newSynapseCount TODO make fraction
               doPooling = False, # allows to turn off pooling
               segUpdateValidDuration = 5,
               burnIn = 2,             # Used for evaluating the prediction score
               collectStats = False,    # If true, collect training and inference stats
               seed = 42,
               verbosity = VERBOSITY,
               checkSynapseConsistency = False,

               # List (as string) of trivial predictions to compute alongside
               # the full TP. See TrivialPredictor.py for a list of allowed methods
               trivialPredictionMethods = '',
               pamLength = 1,
               maxInfBacktrack = 10,
               maxLrnBacktrack = 5,
               maxAge = 100000,
               maxSeqLength = 32,

               # Fixed size mode params
               maxSegmentsPerCell = -1,
               maxSynapsesPerSegment = -1,

               # Output control
               outputType = 'normal',
               ):

    #---------------------------------------------------------------------------------
    # Save our __init__ args for debugging
    self._initArgsDict = _extractCallingMethodArgs()

    #---------------------------------------------------------------------------------
    # These two variables are for testing

    # If set to True, Cells4 will perform (time consuming) invariance checks
    self.checkSynapseConsistency = checkSynapseConsistency

    # If set to False, Cells4 will *not* be treated as an ephemeral member
    # and full TP10X pickling is possible. This is useful for testing
    # pickle/unpickle without saving Cells4 to an external file
    self.makeCells4Ephemeral = True

    #---------------------------------------------------------------------------------
    # Init the base class
    TP.__init__(self,
               numberOfCols = numberOfCols,
               cellsPerColumn = cellsPerColumn,
               initialPerm = initialPerm,
               connectedPerm = connectedPerm,
               minThreshold = minThreshold,
               newSynapseCount = newSynapseCount,
               permanenceInc = permanenceInc,
               permanenceDec = permanenceDec,
               permanenceMax = permanenceMax, # never exceed this value
               globalDecay = globalDecay,
               activationThreshold = activationThreshold,
               doPooling = doPooling,
               segUpdateValidDuration = segUpdateValidDuration,
               burnIn = burnIn,
               collectStats = collectStats,
               seed = seed,
               verbosity = verbosity,
               trivialPredictionMethods = trivialPredictionMethods,
               pamLength = pamLength,
               maxInfBacktrack = maxInfBacktrack,
               maxLrnBacktrack = maxLrnBacktrack,
               maxAge = maxAge,
               maxSeqLength = maxSeqLength,
               maxSegmentsPerCell = maxSegmentsPerCell,
               maxSynapsesPerSegment = maxSynapsesPerSegment,
               outputType = outputType,
               )
開發者ID:ARK1988,項目名稱:nupic,代碼行數:82,代碼來源:TP10X2.py

示例10: reset

 def reset(self):
   """ Reset the state of all cells.
   This is normally used between sequences while training. All internal states
   are reset to 0.
   """
   TP.reset(self)
開發者ID:AndreCAndersen,項目名稱:nupic,代碼行數:6,代碼來源:TPTrivial.py

示例11: testCheckpointMiddleOfSequence2

    def testCheckpointMiddleOfSequence2(self):
        """More complex test of checkpointing in the middle of a sequence."""
        tp1 = TP(
            2048,
            32,
            0.21,
            0.5,
            11,
            20,
            0.1,
            0.1,
            1.0,
            0.0,
            14,
            False,
            5,
            2,
            False,
            1960,
            0,
            False,
            "",
            3,
            10,
            5,
            0,
            32,
            128,
            32,
            "normal",
        )
        tp2 = TP(
            2048,
            32,
            0.21,
            0.5,
            11,
            20,
            0.1,
            0.1,
            1.0,
            0.0,
            14,
            False,
            5,
            2,
            False,
            1960,
            0,
            False,
            "",
            3,
            10,
            5,
            0,
            32,
            128,
            32,
            "normal",
        )

        with resource_stream(__name__, "data/tp_input.csv") as fin:
            reader = csv.reader(fin)
            records = []
            for bottomUpInStr in fin:
                bottomUpIn = numpy.array(eval("[" + bottomUpInStr.strip() + "]"), dtype="int32")
                records.append(bottomUpIn)

        for r in records[:250]:
            output1 = tp1.compute(r, True, True)
            output2 = tp2.compute(r, True, True)
            self.assertTrue(numpy.array_equal(output1, output2))

        tp3 = pickle.loads(pickle.dumps(tp1))
        tp4 = pickle.loads(pickle.dumps(tp2))

        i = 0
        for r in records[250:]:
            print i
            i += 1
            out1 = tp1.compute(r, True, True)
            out2 = tp2.compute(r, True, True)
            out3 = tp3.compute(r, True, True)
            out4 = tp4.compute(r, True, True)

            self.assertTPsEqual(tp1, tp2)

            self.assertTrue(numpy.array_equal(out1, out2))
            self.assertTrue(numpy.array_equal(out1, out3))
            self.assertTrue(numpy.array_equal(out1, out4))
開發者ID:plexzhang,項目名稱:nupic-1,代碼行數:90,代碼來源:tp_test.py

示例12: ScalarEncoder

import pyaudio
import audioop
import math
from nupic.encoders import ScalarEncoder
from nupic.research.TP import TP
from termcolor import colored

# Create our NuPIC entities

enc = ScalarEncoder(n=50, w=3, minval=0, maxval=100,
						clipInput=True, forced=True)

tp = TP(numberOfCols=50, cellsPerColumn=4, initialPerm=0.5,
		connectedPerm=0.5, minThreshold=5, newSynapseCount=5,
		permanenceInc=0.1, permanenceDec=0.1,
        activationThreshold=3, globalDecay=0.1, burnIn=1,
        checkSynapseConsistency=False, pamLength=3)

# Setup our PyAudio Stream

p = pyaudio.PyAudio()
stream = p.open(format = pyaudio.paInt16, channels = 1,
	rate = int(p.get_device_info_by_index(0)['defaultSampleRate']),
	input = True, frames_per_buffer = 1024*5)

print "%-48s %48s" % (colored("DECIBELS","green"),
						colored("PREDICTION","red"))

b = 0
while 1:
開發者ID:jeffk,項目名稱:pytexas-nupic,代碼行數:30,代碼來源:volume.py

示例13: main

def main(SEED, VERBOSITY):
    # TP 作成
    tp = TP(
            numberOfCols          = 100,
            cellsPerColumn        = 1,
            initialPerm           = 0.3,
            connectedPerm         = 0.5,
            minThreshold          = 4,
            newSynapseCount       = 7,
            permanenceInc         = 0.1,
            permanenceDec         = 0.05,
            activationThreshold   = 5,
            globalDecay           = 0,
            burnIn                = 1,
            seed                  = SEED,
            verbosity             = VERBOSITY,
            checkSynapseConsistency  = True,
            pamLength                = 1000
            )

    print
    trainingSet = _getSimplePatterns(10, 10)
    for seq in trainingSet[0:5]:
        _printOneTrainingVector(seq)


    # TP學習
    print
    print 'Learning 1 ... A->A->A'
    for _ in range(2):
        for seq in trainingSet[0:5]:
            for _ in range(10):
                #tp.learn(seq)
                tp.compute(seq, enableLearn = True, computeInfOutput=False)
            tp.reset()

    print
    print 'Learning 2 ... A->B->C'
    for _ in range(10):
        for seq in trainingSet[0:5]:
            tp.compute(seq, enableLearn = True, computeInfOutput=False)
        tp.reset()


    # TP 予測
    # Learning 1のみだと, A->Aを出力するのみだが,
    # その後, Learning 2もやると, A->A,Bを出力するようになる. 
    print
    print 'Running inference'
    for seq in trainingSet[0:5]:
        # tp.reset()
        # tp.resetStats()
        tp.compute(seq, enableLearn = False, computeInfOutput = True)
        tp.printStates(False, False)
開發者ID:,項目名稱:,代碼行數:54,代碼來源:

示例14: Model

class Model():


  def __init__(self,
               numberOfCols=16384, cellsPerColumn=8,
                initialPerm=0.5, connectedPerm=0.5,
                minThreshold=164, newSynapseCount=164,
                permanenceInc=0.1, permanenceDec=0.0,
                activationThreshold=164,
                pamLength=10,
                checkpointDir=None):

    self.tp = TP(numberOfCols=numberOfCols, cellsPerColumn=cellsPerColumn,
                initialPerm=initialPerm, connectedPerm=connectedPerm,
                minThreshold=minThreshold, newSynapseCount=newSynapseCount,
                permanenceInc=permanenceInc, permanenceDec=permanenceDec,
                
                # 1/2 of the on bits = (16384 * .02) / 2
                activationThreshold=activationThreshold,
                globalDecay=0, burnIn=1,
                #verbosity=3,  # who knows what this does...
                checkSynapseConsistency=False,
                pamLength=pamLength)

    self.checkpointDir = checkpointDir
    self.checkpointPklPath = None
    self.checkpointDataPath = None
    self._initCheckpoint()


  def _initCheckpoint(self):
    if self.checkpointDir:
      if not os.path.exists(self.checkpointDir):
        os.makedirs(self.checkpointDir)

      self.checkpointPklPath = self.checkpointDir + "/model.pkl"
      self.checkpointDataPath = self.checkpointDir + "/model.data"


  def canCheckpoint(self):
    return self.checkpointDir != None


  def hasCheckpoint(self):
    return (os.path.exists(self.checkpointPklPath) and
            os.path.exists(self.checkpointDataPath))


  def load(self):
    if not self.checkpointDir:
      raise(Exception("No checkpoint directory specified"))

    if not self.hasCheckpoint():
      raise(Exception("Could not find checkpoint file"))
      
    with open(self.checkpointPklPath, 'rb') as f:
      self.tp = pickle.load(f)

    self.tp.loadFromFile(self.checkpointDataPath)


  def save(self):
    if not self.checkpointDir:
      raise(Exception("No checkpoint directory specified"))

    self.tp.saveToFile(self.checkpointDataPath)

    with open(self.checkpointPklPath, 'wb') as f:
      pickle.dump(self.tp, f)


  def feedTerm(self, term, learn=True):
    """ Feed a Term to model, returning next predicted Term """
    tp = self.tp
    array = numpy.array(term.toArray(), dtype="uint32")
    tp.resetStats()
    tp.compute(array, enableLearn = learn, computeInfOutput = True)
    #print "ret:  " + repr(ret)
    #if ret.all() == array.all():
    #  print "EQUAL to input"
    ret = tp.getStats()
    #ret = tp.printStates()

    print "ret: " + repr(ret)
    print
    print
    print "*****************************************"

    predictedCells = tp.getPredictedState()
    predictedColumns = predictedCells.max(axis=1)
    
    predictedBitmap = predictedColumns.nonzero()[0].tolist()
    return Term().createFromBitmap(predictedBitmap)
  

  def resetSequence(self):
    print "RESET"
    self.tp.reset()
開發者ID:moorejpdx,項目名稱:nupic.experiments,代碼行數:98,代碼來源:model.py

示例15: xrange

# In[20]:

for column in xrange(4):
    connected = np.zeros((24,), dtype="int")
    sp.getConnectedSynapses(column, connected)
    print connected


print 'STARTING TEMPORAL POOLING'

# In[21]:

tp = TP(numberOfCols=50, cellsPerColumn=2,
        initialPerm=0.5, connectedPerm=0.5,
        minThreshold=10, newSynapseCount=10,
        permanenceInc=0.1, permanenceDec=0.0,
        activationThreshold=8,
        globalDecay=0, burnIn=1,
        checkSynapseConsistency=False,
        pamLength=10)


# In[22]:

for i in range(1):
    for note in encoded_list:
        tp.compute(note, enableLearn = True, computeInfOutput = False)
        # This function prints the segments associated with every cell.$$$$
        # If you really want to understand the TP, uncomment this line. By following
        # every step you can get an excellent understanding for exactly how the TP
        # learns.
        # tp.printCells()
開發者ID:cchio,項目名稱:nupic-fall2014-music-composer-fingerprinting,代碼行數:32,代碼來源:composer_finder_temp.py


注:本文中的nupic.research.TP.TP類示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。