當前位置: 首頁>>代碼示例>>Python>>正文


Python MiniSom.weights方法代碼示例

本文整理匯總了Python中minisom.MiniSom.weights方法的典型用法代碼示例。如果您正苦於以下問題:Python MiniSom.weights方法的具體用法?Python MiniSom.weights怎麽用?Python MiniSom.weights使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在minisom.MiniSom的用法示例。


在下文中一共展示了MiniSom.weights方法的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_recommendation

# 需要導入模塊: from minisom import MiniSom [as 別名]
# 或者: from minisom.MiniSom import weights [as 別名]
def test_recommendation():
    uji_profil = db.uji_profil
    current_seq = []
    for t in uji_profil.find({}):
        current_seq.append("Topik " + str(t['topic']))

    '''
    APPLY SOM
    '''
    allTopic = articles.distinct("topic")
    lentopic = len(allTopic)
    uniqueTopic = []
    for t in allTopic:
        uniqueTopic.append("Topik " + str(t).strip())

    lebarSOM = lentopic*lentopic + lentopic*2 + 1
    
    somInput = []
    somInput.append(getPresedenceMatrix(convertSession(current_seq,uniqueTopic),uniqueTopic,1))
    som = MiniSom(16,16,lentopic,sigma=1.0,learning_rate=0.5)
    som.weights = numpy.load('weight_som.npy')
    cluster_winner = ""
    for cnt,xx in enumerate(somInput):
        w = som.winner(xx) # getting the winner
        cluster_winner = (str(w[0])+"-"+str(w[1]))

    '''
    SEARCH FOR THE PATTERN IN PARTICULAR CLUSTER
    '''

    print cluster_winner
    print current_seq

    prefix_result = db.prefix_result
    prefix_cluster = prefix_result.find({"cluster":cluster_winner,"data_uji":no_uji}).sort("min_sup",pymongo.DESCENDING)

    topik_rekomendasi = getTopikRekomendasi(current_seq,prefix_cluster)

    if topik_rekomendasi == "":
        prefix_cluster = prefix_result.find({"data_uji":no_uji}).sort("min_sup",pymongo.DESCENDING)
        topik_rekomendasi = getTopikRekomendasi(current_seq,prefix_cluster)
    
    html = "--tidak ada topik rekomendasi--"
    if(topik_rekomendasi!=""):
        the_topik = topik_rekomendasi.replace("Topik","").strip()
        html = getTestArticle(the_topik,"Rekomendasi 1","accordion_recommendation",'col_rek1',"")
        html += getTestArticle(the_topik,"Rekomendasi 2","accordion_recommendation",'col_rek2',"")
        html += getTestArticle(the_topik,"Rekomendasi 3","accordion_recommendation",'col_rek3',"")

    return html
開發者ID:NurFaizin,項目名稱:Combining-Web-Content-and-Usage-Mining,代碼行數:52,代碼來源:app.py

示例2: test_som

# 需要導入模塊: from minisom import MiniSom [as 別名]
# 或者: from minisom.MiniSom import weights [as 別名]
def test_som():
    print "Clustering.."
    
    session_log_db = db.session_log
    allTopic = articles.distinct("topic")
    lentopic = len(allTopic)
    uniqueTopic = []
    for t in allTopic:
        uniqueTopic.append("Topik " + str(t).strip())
    
    lebarSOM = lentopic*lentopic + lentopic*2 + 1
    panjangSOM = session_log_db.find({"data_uji":no_uji}).count()
    #somInput = zeros((panjangSOM,lebarSOM),dtype=int16)
    somInput = []
    oriSess = []
    for s in session_log_db.find({"data_uji":no_uji}):
        somInput.append(getPresedenceMatrix(convertSession(s["session"],uniqueTopic),uniqueTopic,1))
        oriSess.append(s["session"])

    som = MiniSom(16,16,lentopic,sigma=1.0,learning_rate=0.5)
    som.weights = numpy.load('weight_som.npy')
    #print som.weights
    outfile = open('cluster-result.csv','w')
    seq_number = 0
    cluster_mongo = db.cluster_result
    cluster_mongo.remove({"data_uji":no_uji})
    for cnt,xx in enumerate(somInput):
        w = som.winner(xx) # getting the winner
        #print cnt
        #print xx
        #print w
        
        #for z in xx:
        #    outfile.write("%s " % str(z))
        outfile.write("%s " % str(("|".join(oriSess[seq_number]))))
        outfile.write("%s-%s \n" % (str(w[0]),str(w[1])))
        cluster_mongo.insert({"topik":"|".join(oriSess[seq_number]),"cluster":(str(w[0])+"-"+str(w[1])),"data_uji":no_uji})
        seq_number = seq_number + 1
        #outfile.write("%s %s\n" % str(xx),str(w))
        # palce a marker on the winning position for the sample xx
        #plot(w[0]+.5,w[1]+.5,markers[t[cnt]],markerfacecolor='None',
        #     markeredgecolor=colors[t[cnt]],markersize=12,markeredgewidth=2)
    outfile.close()
    #TopikCluster()
    
    html = '<div role="alert" class="alert alert-success alert-dismissible fade in">'
    html = html + ' <button aria-label="Close" data-dismiss="alert" class="close" type="button"><span aria-hidden="true">Close</span></button>'
    html = html + 'Berhasil Melakukan Clustering</div>'
    
    return html
開發者ID:NurFaizin,項目名稱:Combining-Web-Content-and-Usage-Mining,代碼行數:52,代碼來源:app.py

示例3: test_som

# 需要導入模塊: from minisom import MiniSom [as 別名]
# 或者: from minisom.MiniSom import weights [as 別名]
def test_som(alpha_som,omega_som):
    
    print "Clustering pada Data Uji " + str(no_uji)
    
    session_log_db = db.session_log
    allTopic = articles.distinct("topic")
    lentopic = len(allTopic)
    uniqueTopic = []
    for t in allTopic:
        uniqueTopic.append("Topik " + str(t).strip())
    
    lebarSOM = lentopic*lentopic + lentopic*2 + 1
    panjangSOM = session_log_db.find({"data_uji":no_uji}).count()
    #somInput = zeros((panjangSOM,lebarSOM),dtype=int16)
    somInput = []
    oriSess = []
    for s in session_log_db.find({"data_uji":no_uji}):
        somInput.append(getPresedenceMatrix(convertSession(s["session"],uniqueTopic),uniqueTopic,1))
        oriSess.append(s["session"])

    
    som = MiniSom(16,16,lentopic,sigma=omega_som,learning_rate=alpha_som)
    som.weights = numpy.load('weight_som.npy')
    #print som.weights
    outfile = open('cluster-result.csv','w')
    seq_number = 0
    cluster_mongo = db.cluster_result
    cluster_mongo.remove({"data_uji":no_uji})
    for cnt,xx in enumerate(somInput):
        w = som.winner(xx) # getting the winner
        outfile.write("%s " % str(("|".join(oriSess[seq_number]))))
        outfile.write("%s-%s \n" % (str(w[0]),str(w[1])))
        cluster_mongo.insert({"topik":"|".join(oriSess[seq_number]),"cluster":(str(w[0])+"-"+str(w[1])),"data_uji":no_uji})
        seq_number = seq_number + 1
    outfile.close()
    #TopikCluster()
    
    return "Berhasil Melakukan Clustering"
開發者ID:NurFaizin,項目名稱:Combining-Web-Content-and-Usage-Mining,代碼行數:40,代碼來源:batch_2.py


注:本文中的minisom.MiniSom.weights方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。