當前位置: 首頁>>代碼示例>>Python>>正文


Python MiniSom.random_weights_init方法代碼示例

本文整理匯總了Python中minisom.MiniSom.random_weights_init方法的典型用法代碼示例。如果您正苦於以下問題:Python MiniSom.random_weights_init方法的具體用法?Python MiniSom.random_weights_init怎麽用?Python MiniSom.random_weights_init使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在minisom.MiniSom的用法示例。


在下文中一共展示了MiniSom.random_weights_init方法的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: SOM

# 需要導入模塊: from minisom import MiniSom [as 別名]
# 或者: from minisom.MiniSom import random_weights_init [as 別名]
def SOM(data,leninput,lentarget):
    som = MiniSom(5,5,leninput,sigma=1.0,learning_rate=0.5)
    som.random_weights_init(data)
    print("Training...")
    som.train_batch(data,10000) # training with 10000 iterations
    print("\n...ready!")
    
    numpy.save('weight_som.txt',som.weights)
   
    bone()
    pcolor(som.distance_map().T) # distance map as background
    colorbar()
    
    t = zeros(lentarget,dtype=int)
    
    # use different colors and markers for each label
    markers = ['o','s','D']
    colors = ['r','g','b']
    outfile = open('cluster-result.csv','w')
    for cnt,xx in enumerate(data):
        w = som.winner(xx) # getting the winner
        #print cnt
        #print xx
        #print w
        
        for z in xx:
            outfile.write("%s " % str(z))
        outfile.write("%s-%s \n" % (str(w[0]),str(w[1])))
        
        #outfile.write("%s %s\n" % str(xx),str(w))
        # palce a marker on the winning position for the sample xx
        #plot(w[0]+.5,w[1]+.5,markers[t[cnt]],markerfacecolor='None',
        #     markeredgecolor=colors[t[cnt]],markersize=12,markeredgewidth=2)
    outfile.close()
開發者ID:NurFaizin,項目名稱:Combining-Web-Content-and-Usage-Mining,代碼行數:36,代碼來源:PreprocessLog.py

示例2: SOM

# 需要導入模塊: from minisom import MiniSom [as 別名]
# 或者: from minisom.MiniSom import random_weights_init [as 別名]
def SOM(data,leninput,lentarget,alpha_som,omega_som):
    som = MiniSom(16,16,leninput,sigma=omega_som,learning_rate=alpha_som)
    som.random_weights_init(data)
    print("Training...")
    som.train_batch(data,20000) # training with 10000 iterations
    print("\n...ready!")
    
    numpy.save('weight_som',som.weights)
   
    bone()
    pcolor(som.distance_map().T) # distance map as background
    colorbar()
    
    t = zeros(lentarget,dtype=int)
    
    # use different colors and markers for each label
    markers = ['o','s','D']
    colors = ['r','g','b']
    outfile = open('cluster-result.csv','w')
    for cnt,xx in enumerate(data):
        w = som.winner(xx) # getting the winner
        
        
        for z in xx:
            outfile.write("%s " % str(z))
        outfile.write("%s-%s \n" % (str(w[0]),str(w[1])))
        
        
    outfile.close()
開發者ID:NurFaizin,項目名稱:Combining-Web-Content-and-Usage-Mining,代碼行數:31,代碼來源:batch_2.py

示例3: testSOMs

# 需要導入模塊: from minisom import MiniSom [as 別名]
# 或者: from minisom.MiniSom import random_weights_init [as 別名]
def testSOMs():
    from sklearn import datasets
    from minisom import MiniSom

    d = datasets.load_iris()
    data = np.apply_along_axis(lambda x: x/np.linalg.norm(x), 1, d['data']) # data normalization

    som = MiniSom(7, 7, 4, sigma=1.0, learning_rate=0.5)

    som.random_weights_init(data)
    print("Training...")
    som.train_random(data, 1000) # random training
    print("\n...ready!")

    ### Plotting the response for each pattern in the iris dataset ###
    from pylab import plot,axis,show,pcolor,colorbar,bone
    bone()
    pcolor(som.distance_map().T) # plotting the distance map as background
    colorbar()
    t = d['target']
    # use different colors and markers for each label
    markers = ['o','s','D']
    colors = ['r','g','b']
    for cnt,xx in enumerate(data):
     w = som.winner(xx) # getting the winner
     # palce a marker on the winning position for the sample xx
     plot(w[0]+.5,w[1]+.5,markers[t[cnt]],markerfacecolor='None',
        markeredgecolor=colors[t[cnt]],markersize=12,markeredgewidth=2)
    axis([0,som.weights.shape[0],0,som.weights.shape[1]])
    show() # show the figure
開發者ID:eddienko,項目名稱:EuclidVisibleInstrument,代碼行數:32,代碼來源:SOM.py

示例4: SOM

# 需要導入模塊: from minisom import MiniSom [as 別名]
# 或者: from minisom.MiniSom import random_weights_init [as 別名]
def SOM(data,leninput,lentarget):
    som = MiniSom(16,16,leninput,sigma=1.0,learning_rate=0.5)
    som.random_weights_init(data)
    print("Training...")
    som.train_random(data,10000) # training with 10000 iterations
    print("\n...ready!")
    
    numpy.save('weight_som',som.weights)
開發者ID:NurFaizin,項目名稱:Combining-Web-Content-and-Usage-Mining,代碼行數:10,代碼來源:app.py

示例5: _minisomrandom

# 需要導入模塊: from minisom import MiniSom [as 別名]
# 或者: from minisom.MiniSom import random_weights_init [as 別名]
    def _minisomrandom(self):
        """Clusters sentence vectors using minisomrandom algorithm
        
        Returns
        -------
        numpy ndarray
            codebook (weights) of the trained SOM
        """

        H = int(self.opts['size'])
        W = int(self.opts['size'])
        N = self.X.shape[1]
        som = MiniSom(H, W, N, sigma=1.0, random_seed=1)
        if self.opts['initialization']:
            som.random_weights_init(self.X)
        som.train_random(self.X, self.opts['niterations'])
        return som.get_weights()
開發者ID:avsilva,項目名稱:sparse-nlp,代碼行數:19,代碼來源:sentencecluster.py

示例6: len

# 需要導入模塊: from minisom import MiniSom [as 別名]
# 或者: from minisom.MiniSom import random_weights_init [as 別名]
    ATTENTION: pylab is required for the visualization.        
"""


# reading the iris dataset in the csv format    
# (downloaded from http://aima.cs.berkeley.edu/data/iris.csv)
#rn = len(open('iris4.csv').readlines())

data = genfromtxt('data5.csv', delimiter=',',dtype = float)
data = numpy.nan_to_num(data)
print (data)
data = apply_along_axis(lambda x: x/linalg.norm(x),1,data) # data normalization

### Initialization and training ###
som = MiniSom(40,40,136,sigma=1.0,learning_rate=0.5)
som.random_weights_init(data)
print("Training...")
som.train_random(data,10000) # random training
print("\n...ready!")

### Plotting the response for each pattern in the iris dataset ###
from pylab import plot,axis,show,pcolor,colorbar,bone

bone()
pcolor(som.distance_map().T) # plotting the distance map as background
colorbar()

target = genfromtxt('class5.csv',delimiter=',',usecols=(0),dtype=int) # loadingthe labels
t = zeros(len(target),dtype=int)
print (target)
開發者ID:heeju00627,項目名稱:heeju,代碼行數:32,代碼來源:mytest(som).py

示例7: imread

# 需要導入模塊: from minisom import MiniSom [as 別名]
# 或者: from minisom.MiniSom import random_weights_init [as 別名]
from pylab import imread,imshow,figure,show,subplot,title
from numpy import reshape,flipud,unravel_index,zeros
from minisom import MiniSom

# read the image
img = imread('tree.jpg')

# reshaping the pixels matrix
pixels = reshape(img,(img.shape[0]*img.shape[1],3))

# SOM initialization and training
print('training...')
som = MiniSom(3,3,3,sigma=0.1,learning_rate=0.2) # 3x3 = 9 final colors
som.random_weights_init(pixels)
starting_weights = som.weights.copy() # saving the starting weights
som.train_random(pixels,100)

print('quantization...')
qnt = som.quantization(pixels) # quantize each pixels of the image
print('building new image...')
clustered = zeros(img.shape)
for i,q in enumerate(qnt): # place the quantized values into a new image
	clustered[unravel_index(i,dims=(img.shape[0],img.shape[1]))] = q
print('done.')

# show the result
figure(1)
subplot(221)
title('original')
imshow(flipud(img))
subplot(222)
開發者ID:JaySquare87,項目名稱:minisom,代碼行數:33,代碼來源:example_color.py

示例8: MinMaxScaler

# 需要導入模塊: from minisom import MiniSom [as 別名]
# 或者: from minisom.MiniSom import random_weights_init [as 別名]
import pandas as pd

# Importing the dataset
dataset = pd.read_csv('Credit_Card_Applications.csv')
X = dataset.iloc[:, :-1].values
y = dataset.iloc[:, -1].values

# Feature Scaling
from sklearn.preprocessing import MinMaxScaler
sc = MinMaxScaler(feature_range = (0, 1))
X = sc.fit_transform(X)

# Training the SOM
from minisom import MiniSom
som = MiniSom(x = 10, y = 10, input_len = 15, sigma = 1.0, learning_rate = 0.5)
som.random_weights_init(X)
som.train_random(data = X, num_iteration = 100)

# Visualizing the results
from pylab import bone, pcolor, colorbar, plot, show
bone()
pcolor(som.distance_map().T)
colorbar()
markers = ['o', 's']
colors = ['r', 'g']
for i, x in enumerate(X):
    w = som.winner(x)
    plot(w[0] + 0.5,
         w[1] + 0.5,
         markers[y[i]],
         markeredgecolor = colors[y[i]],
開發者ID:kmrskt,項目名稱:fraud_detection_using_som,代碼行數:33,代碼來源:som.py

示例9: _parse_file_argument

# 需要導入模塊: from minisom import MiniSom [as 別名]
# 或者: from minisom.MiniSom import random_weights_init [as 別名]
    plt.pcolor(som.distance_map().T)

    return fig, ax

RS = 20160101

if __name__ == '__main__':
    args = _parse_file_argument()
    data = pd.read_csv(args.csv)
    data.fillna(0, inplace=True)

    label_column = args.label_prefix
    label_prefix = data[label_column].values
    data.drop(label_column, axis=1, inplace=True)

    label_column = args.label_sufix
    label_sufix = data[label_column].values
    data.drop(label_column, axis=1, inplace=True)

    id_column = 'id'
    data.drop(id_column, axis=1, inplace=True)

    som = MiniSom(8,8,len(data.columns),sigma=1.0,learning_rate=0.5,random_seed=RS)
    som.random_weights_init(data.as_matrix())

    som.train_random(data.as_matrix(),100)

    _plot_distribution(som)
    plt.savefig('som.png', dpi=120)
開發者ID:maiteb,項目名稱:som-python,代碼行數:31,代碼來源:som.py

示例10: If_running

# 需要導入模塊: from minisom import MiniSom [as 別名]
# 或者: from minisom.MiniSom import random_weights_init [as 別名]

#.........這裏部分代碼省略.........

	background = self.axes.pcolor(self.som.distance_map().T) # plotting the distance map as background
	#f.colorbar(a)
	t = np.zeros(len(self.target),dtype=int)
	t[self.target == 'A'] = 0
	t[self.target == 'B'] = 1
	t[self.target == 'C'] = 2
	t[self.target == 'D'] = 3

	# use different colors and markers for each label
	markers = ['o','s','D', '+']
	colors = ['r','g','b', 'y']
	for cnt,xx in enumerate(data):
	  w = self.som.winner(xx) # getting the winner
	  # place a marker on the winning position for the sample xx
	  tmp = self.axes.plot(w[0]+.5,w[1]+.5,markers[t[cnt]],markerfacecolor='None',
	      markeredgecolor=colors[t[cnt]],markersize=12,markeredgewidth=2)
	self.axes.axis([0,self.som.weights.shape[0],0,self.som.weights.shape[1]])
	#show() # show the figure
	#print "drawing"
	#self.figure.canvas.draw()



    def init_som(self, widget=None, data=None):
      ##print self.data
      ### Initialization and training ###
      cols = self.columns[self.combobox.get_active()]
      data = self.data[:, 0:len(cols)]

      #print len(cols)
      self.som = MiniSom(self.width_spin_button.get_value_as_int(), self.height_spin_button.get_value_as_int(), len(cols),sigma=1.2,learning_rate=0.5)
#      self.som.weights_init_gliozzi(data)
      self.som.random_weights_init(data)

    def train_som(self):
      cols = self.columns[self.combobox.get_active()]
      data = self.data[:, 0:len(cols)]
      print("Training...")
      #self.som.train_gliozzi(data) # Gliozzi et al training

      self.som.train_random(data,20)


      print("\n...ready!")

    def make_treeview(self, data, liststore):
	#i = 0
	cols = self.columns[self.combobox.get_active()]
	#print type(cols)
	#print len(cols)
	for d in data:
	  #i += 1

	  tmp = d.tolist()
	  #print 'tmp', tmp
	  #while len(tmp) < cols:
	    #tmp.append(False)
	    #print 'tmp', tmp
	    #cols = cols - 1
	  Qe = MiniSom.quantization_error_subset(self.som,d,len(cols))
	  #print tmp
	  tmp.append(Qe)
	  tmp.append(4 * Qe ** 0.5)
	  liststore.append(tmp)
開發者ID:sriveravi,項目名稱:som,代碼行數:69,代碼來源:gui.py

示例11: self_organizing_map

# 需要導入模塊: from minisom import MiniSom [as 別名]
# 或者: from minisom.MiniSom import random_weights_init [as 別名]
def self_organizing_map(image=None, images=None, weights=None, weights_max_value=1, n_colors=64,
                        dim=None, num_training=1000, std_multiple=0, threshold=False, show_plot=False, show_color_space_assignment=False):
    """
    Given an image or stack of images (list of np arrays), cluster with an SOM and return a list of the color centers
    num_training is the number of pixels used to train
    weights is a list of rgb values to initialize the algorithm with
    weights_max_value is a number representing the maximum possible value so that weights can be normalized to a 0-1 scale
    n_colors is the number of clusters
    dim is the dimensions of the nodes in the SOM. Total number of nodes should be the same as the number specified
    threshold is a boolean whether to consider the black pixels or not
    std_multiple is the standard deviation multiple used in thresholding
    show_plot is a boolean whether to show the quantized image or not
    show_color_space_assignment is a boolean whether to show the way the color space is clustered or not

    """
    neuron_pixels, non_neuron_pixels, pixels, image = sample_data(image, images, std_multiple)

    if dim is None and weights is not None:
        # normalize weights
        weights = (np.array(weights) / weights_max_value).tolist()

        # figure out a way to spread out the nodes of the som and find the int factor closest to the square root
        factor = get_factor_closest_to_sqrt(len(weights))

        # it's prime if the factor is 1
        if factor == 1:
            # add a random weight to make the number of nodes even
            weights = np.vstack((weights, np.random.random(3)))

        # should be fine now
        factor = get_factor_closest_to_sqrt(len(weights))
        dim = (factor, len(weights) / factor)
        weights = np.reshape(weights, (dim[0], dim[1], 3))

    else:
        # there are no weights to initialize
        if n_colors == 2 or n_colors == 3:
            dim = (1, n_colors)
        else:
            factor = get_factor_closest_to_sqrt(n_colors)
            # it's prime if the factor is 1
            if factor == 1:
                # increase the number of colors by one
                n_colors += 1
            # should be fine now
            factor = get_factor_closest_to_sqrt(n_colors)
            dim = (factor, n_colors / factor)

    # determine the dimensions
    som = MiniSom(dim[0], dim[1], 3, weights=weights, sigma=0.1, learning_rate=0.2)
    if weights is None:
        if threshold:
            som.random_weights_init(neuron_pixels)
        else:
            som.random_weights_init(pixels)

    if threshold:
        # get mostly bright pixels with a bit of background
        som.train_random(neuron_pixels, num_training)
    else:
        som.train_random(pixels, num_training)

    if show_plot:
        qnt = som.quantization(pixels)  # quantize each pixels of the image
        clustered = np.zeros(image.shape)
        for i, q in enumerate(qnt):
            clustered[np.unravel_index(i, dims=(image.shape[0], image.shape[1]))] = q

        fig = plt.figure()
        ax = fig.add_subplot(1, 2, 1)
        plt.imshow(image)
        ax.set_title('Original')
        ax = fig.add_subplot(1, 2, 2)
        plt.imshow(clustered)
        ax.set_title('After SOM Clustering')
        plt.show()

    if show_color_space_assignment:
        for intensity in [.1, .2, .4, .6, .8]:
            visualize_color_space(som=som, intensity=intensity)

    return np.reshape(som.weights, (som.weights.shape[0] * som.weights.shape[1], 3))
開發者ID:Lawrence-Moore,項目名稱:NeuronTracing,代碼行數:84,代碼來源:clustering.py

示例12: load_mPD

# 需要導入模塊: from minisom import MiniSom [as 別名]
# 或者: from minisom.MiniSom import random_weights_init [as 別名]
try:
  mPD
  PD
  ProtNames
except:
  mPD = load_mPD()
  PD,ProtNames = load_PD()

R = Cluster.somcluster(mPD,transpose=1,nxgrid=40,nygrid=40,niter=1)

from minisom import MiniSom
### Initialization and training ###
som = MiniSom(40,40,15,sigma=1.0,learning_rate=0.5)
#som.random_weights_init(mPD)
som.weights
som.random_weights_init(transpose(mPD))
print("Training...")
som.train_random(transpose(mPD),100) # training with 100 iterations
print("\n...ready!")


timg = np.zeros(shape=(40,40))
for c in R[0]:
  timg[c[0],c[1]]=timg[c[0],c[1]]+1


plt.figure()
plt.subplot(2,2,1)
plt.imshow(R[1][:,:,1])
plt.subplot(2,2,2)
plt.imshow(mean(R[1],axis=2))
開發者ID:eugenpt,項目名稱:ICG_bioinfo_stuff,代碼行數:33,代碼來源:ep_bioinfo_somTest.py

示例13: test_random_weights_init

# 需要導入模塊: from minisom import MiniSom [as 別名]
# 或者: from minisom.MiniSom import random_weights_init [as 別名]
 def test_random_weights_init(self):
     som = MiniSom(2, 2, 2, sigma=0.1, random_seed=1)
     som.random_weights_init(np.array([[1.0, .0]]))
     for w in som.weights:
         assert_array_equal(w[0], np.array([1.0, .0]))
開發者ID:vitorhirota,項目名稱:minisom,代碼行數:7,代碼來源:test.py

示例14: SomPage

# 需要導入模塊: from minisom import MiniSom [as 別名]
# 或者: from minisom.MiniSom import random_weights_init [as 別名]
class SomPage(tk.Frame):
    
    ## UI 생성
    def __init__(self, parent, controller):
     
        ## tk.Frame 초기화
        tk.Frame.__init__(self, parent)
        
        style.use("ggplot")

        self.figure = pl.figure(1)
        self.a = self.figure.add_subplot(111)

        self.canvas = FigureCanvasTkAgg(self.figure, self)
        self.canvas.get_tk_widget().grid(sticky="news")
        self.canvas._tkcanvas.grid(sticky="news")
        
        ## Initialization
        self.som = MiniSom(10,10,136,sigma=1.0,learning_rate=0.5)
    
    ####---------------------------------------------   
    ## THREAD 생성
    def callback_threaded(self, status):
        
        self.queue = Queue()    # 크기가 1인 버퍼
        
        self.thread = Thread(target=self.training, args=(status,))
        self.thread.daemon = True
        self.thread.start()
        
        self.queue.put(object()) ## 첫번째
        print("Start")
        self.queue.join() ## 네번째
        self.thread.join()
        self.plotting(status)
        
    
    ## size, learning_rate, training_count, target_count)
    def training(self, status):
        
        self.figure.clear()
        self.queue.get() ## 두번째
        
        ## reading the dataset in the csv format  
        self.data = genfromtxt('iris6.csv', delimiter=',',dtype = float)
        self.data = numpy.nan_to_num(self.data)
        ## data normalization
        self.data = apply_along_axis(lambda x: x/linalg.norm(x),1,self.data) 
        
        self.som.random_weights_init(self.data)
        
        print("Training...")
        
        self.som.train_random(self.data,100) # random training
        
        bone()
        ## plotting the distance map as background
        pcolor(self.som.distance_map().T)
        colorbar()
        
        ## loadingthe labels
        target = genfromtxt('iris4_2.csv', delimiter=',', usecols=(0), dtype=int)
        self.t = zeros(len(target),dtype=int)
        
        print("...ready to plot...")
        
        for i in range(len(target)):
            self.t[target == i] = i
        
        self.som.win_map(self.data)
        
        self.queue.task_done() ## 세번째
        
    def plotting(self, status):
        
        self.figure = pl.figure(1)
        self.a = self.figure.add_subplot(111)
        
        print("Plotting...")
        
        ## use differet colors and markers for each label
        ## markers = []
        colors = ['r','g','b','y','w','orange','black','pink','brown','purple']
        
        ## making bm file
        with open('bm.txt', 'w') as f:
             f.write(str(len(self.data))+'\n')
             for cnt,xx in enumerate(self.data):
                 win = self.som.winner(xx) # getting the winner
             # palce a marker on the winning position for the sample xx
                 self.a.plot(win[0]+.5,win[1]+.5,'.', markerfacecolor='None', markeredgecolor=colors[self.t[cnt]], markersize=1, markeredgewidth=1)
                 f.write(str(win[0])+'\t'+str(win[1])+'\t'+str(self.t[cnt])+'\n')
        
        ## making umx file
        with open('umx.txt', 'w') as f:
            for cnt,xx in enumerate(self.data):
             win = self.som.winner(xx) # getting the winner
             # palce a marker on the winning position for the sample xx
             self.a.plot(win[0]+.5,win[1]+.5,'.',markerfacecolor='None',
                   markeredgecolor=colors[self.t[cnt]], markersize=1, markeredgewidth=1)
#.........這裏部分代碼省略.........
開發者ID:heeju00627,項目名稱:heeju,代碼行數:103,代碼來源:class_som.py


注:本文中的minisom.MiniSom.random_weights_init方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。