本文整理匯總了Python中minisom.MiniSom.quantization_error方法的典型用法代碼示例。如果您正苦於以下問題:Python MiniSom.quantization_error方法的具體用法?Python MiniSom.quantization_error怎麽用?Python MiniSom.quantization_error使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類minisom.MiniSom
的用法示例。
在下文中一共展示了MiniSom.quantization_error方法的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_train_batch
# 需要導入模塊: from minisom import MiniSom [as 別名]
# 或者: from minisom.MiniSom import quantization_error [as 別名]
def test_train_batch(self):
som = MiniSom(5, 5, 2, sigma=1.0, learning_rate=0.5, random_seed=1)
data = np.array([[4, 2], [3, 1]])
q1 = som.quantization_error(data)
som.train_batch(data, 10)
assert q1 > som.quantization_error(data)
示例2: setUp
# 需要導入模塊: from minisom import MiniSom [as 別名]
# 或者: from minisom.MiniSom import quantization_error [as 別名]
class TestMinisom:
def setUp(self):
self.som = MiniSom(5, 5, 1)
for w in self.som.weights: # checking weights normalization
assert_almost_equal(1.0, np.linalg.norm(w))
self.som.weights = np.zeros((5, 5)) # fake weights
self.som.weights[2, 3] = 5.0
self.som.weights[1, 1] = 2.0
def test_fast_norm(self):
assert minisom.fast_norm(np.array([1, 3])) == sqrt(1 + 9)
def test_gaussian(self):
bell = minisom.gaussian((2, 2), 1, self.som.neigx, self.som.neigy)
assert bell.max() == 1.0
assert bell.argmax() == 12 # unravel(12) = (2,2)
def test_win_map(self):
winners = self.som.win_map([5.0, 2.0])
assert winners[(2, 3)][0] == 5.0
assert winners[(1, 1)][0] == 2.0
def test_activation_reponse(self):
response = self.som.activation_response([5.0, 2.0])
assert response[2, 3] == 1
assert response[1, 1] == 1
def test_activate(self):
assert self.som.activate(5.0).argmin() == 13.0 # unravel(13) = (2,3)
def test_quantization_error(self):
self.som.quantization_error([5, 2]) == 0.0
self.som.quantization_error([4, 1]) == 0.5
def test_quantization(self):
q = self.som.quantization(np.array([4, 2]))
assert q[0] == 5.0
assert q[1] == 2.0
# def test_random_seed(self):
# som1 = MiniSom(5, 5, 2, sigma=1.0, learning_rate=0.5, random_seed=1)
# som2 = MiniSom(5, 5, 2, sigma=1.0, learning_rate=0.5, random_seed=1)
# # same initialization
# assert_array_almost_equal(som1.weights, som2.weights)
# data = np.random.rand(100, 2)
# som1 = MiniSom(5, 5, 2, sigma=1.0, learning_rate=0.5, random_seed=1)
# som1.train_random(data, 10)
# som2 = MiniSom(5, 5, 2, sigma=1.0, learning_rate=0.5, random_seed=1)
# som2.train_random(data, 10)
# # same state after training
# assert_array_almost_equal(som1.weights, som2.weights)
def test_train_batch(self):
som = MiniSom(5, 5, 2, sigma=1.0, learning_rate=0.5, random_seed=1)
data = np.array([[4, 2], [3, 1]])
q1 = som.quantization_error(data)
som.train_batch(data, 10)
assert q1 > som.quantization_error(data)
# def test_train_random(self):
# som = MiniSom(5, 5, 2, sigma=1.0, learning_rate=0.5, random_seed=1)
# data = np.array([[4, 2], [3, 1]])
# q1 = som.quantization_error(data)
# som.train_random(data, 10)
# assert q1 > som.quantization_error(data)
def test_random_weights_init(self):
som = MiniSom(2, 2, 2, sigma=0.1, random_seed=1)
som.random_weights_init(np.array([[1.0, .0]]))
for w in som.weights:
assert_array_equal(w[0], np.array([1.0, .0]))
示例3: MiniSom
# 需要導入模塊: from minisom import MiniSom [as 別名]
# 或者: from minisom.MiniSom import quantization_error [as 別名]
import numpy as np
from minisom import MiniSom
data = np.genfromtxt('isolet1+2+3+4.data', delimiter=',')
label = data[:,617]
data = data[:,0:617]
data = np.apply_along_axis(lambda x: x/np.linalg.norm(x),1,data)
som = MiniSom(10,10,617,sigma=1.0, learning_rate=0.5)
som.random_weights_init(data)
original_error = som.quantization_error(data)
print original_error
som.train_random(data, 5000)
print som.quantization_error(data)
### graphing
from pylab import plot,axis,show,pcolor,colorbar,bone
import random
indexes = random.sample(range(0, len(label)), 500)
graph_target = label[indexes]
graph_data = data[indexes,]
t = np.zeros(len(graph_target),dtype=int)
# everything starts as 0
t[graph_target == 12] = 1
t[graph_target == 2] = 2