當前位置: 首頁>>代碼示例>>Python>>正文


Python MiniSom.quantization_error方法代碼示例

本文整理匯總了Python中minisom.MiniSom.quantization_error方法的典型用法代碼示例。如果您正苦於以下問題:Python MiniSom.quantization_error方法的具體用法?Python MiniSom.quantization_error怎麽用?Python MiniSom.quantization_error使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在minisom.MiniSom的用法示例。


在下文中一共展示了MiniSom.quantization_error方法的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_train_batch

# 需要導入模塊: from minisom import MiniSom [as 別名]
# 或者: from minisom.MiniSom import quantization_error [as 別名]
 def test_train_batch(self):
     som = MiniSom(5, 5, 2, sigma=1.0, learning_rate=0.5, random_seed=1)
     data = np.array([[4, 2], [3, 1]])
     q1 = som.quantization_error(data)
     som.train_batch(data, 10)
     assert q1 > som.quantization_error(data)
開發者ID:vitorhirota,項目名稱:minisom,代碼行數:8,代碼來源:test.py

示例2: setUp

# 需要導入模塊: from minisom import MiniSom [as 別名]
# 或者: from minisom.MiniSom import quantization_error [as 別名]
class TestMinisom:

    def setUp(self):
        self.som = MiniSom(5, 5, 1)
        for w in self.som.weights:  # checking weights normalization
            assert_almost_equal(1.0, np.linalg.norm(w))
        self.som.weights = np.zeros((5, 5))  # fake weights
        self.som.weights[2, 3] = 5.0
        self.som.weights[1, 1] = 2.0

    def test_fast_norm(self):
        assert minisom.fast_norm(np.array([1, 3])) == sqrt(1 + 9)

    def test_gaussian(self):
        bell = minisom.gaussian((2, 2), 1, self.som.neigx, self.som.neigy)
        assert bell.max() == 1.0
        assert bell.argmax() == 12  # unravel(12) = (2,2)

    def test_win_map(self):
        winners = self.som.win_map([5.0, 2.0])
        assert winners[(2, 3)][0] == 5.0
        assert winners[(1, 1)][0] == 2.0

    def test_activation_reponse(self):
        response = self.som.activation_response([5.0, 2.0])
        assert response[2, 3] == 1
        assert response[1, 1] == 1

    def test_activate(self):
        assert self.som.activate(5.0).argmin() == 13.0  # unravel(13) = (2,3)

    def test_quantization_error(self):
        self.som.quantization_error([5, 2]) == 0.0
        self.som.quantization_error([4, 1]) == 0.5

    def test_quantization(self):
        q = self.som.quantization(np.array([4, 2]))
        assert q[0] == 5.0
        assert q[1] == 2.0

    # def test_random_seed(self):
    #     som1 = MiniSom(5, 5, 2, sigma=1.0, learning_rate=0.5, random_seed=1)
    #     som2 = MiniSom(5, 5, 2, sigma=1.0, learning_rate=0.5, random_seed=1)
    #     # same initialization
    #     assert_array_almost_equal(som1.weights, som2.weights)
    #     data = np.random.rand(100, 2)
    #     som1 = MiniSom(5, 5, 2, sigma=1.0, learning_rate=0.5, random_seed=1)
    #     som1.train_random(data, 10)
    #     som2 = MiniSom(5, 5, 2, sigma=1.0, learning_rate=0.5, random_seed=1)
    #     som2.train_random(data, 10)
    #     # same state after training
    #     assert_array_almost_equal(som1.weights, som2.weights)

    def test_train_batch(self):
        som = MiniSom(5, 5, 2, sigma=1.0, learning_rate=0.5, random_seed=1)
        data = np.array([[4, 2], [3, 1]])
        q1 = som.quantization_error(data)
        som.train_batch(data, 10)
        assert q1 > som.quantization_error(data)

    # def test_train_random(self):
    #     som = MiniSom(5, 5, 2, sigma=1.0, learning_rate=0.5, random_seed=1)
    #     data = np.array([[4, 2], [3, 1]])
    #     q1 = som.quantization_error(data)
    #     som.train_random(data, 10)
    #     assert q1 > som.quantization_error(data)

    def test_random_weights_init(self):
        som = MiniSom(2, 2, 2, sigma=0.1, random_seed=1)
        som.random_weights_init(np.array([[1.0, .0]]))
        for w in som.weights:
            assert_array_equal(w[0], np.array([1.0, .0]))
開發者ID:vitorhirota,項目名稱:minisom,代碼行數:74,代碼來源:test.py

示例3: MiniSom

# 需要導入模塊: from minisom import MiniSom [as 別名]
# 或者: from minisom.MiniSom import quantization_error [as 別名]
import numpy as np 
from minisom import MiniSom

data = np.genfromtxt('isolet1+2+3+4.data', delimiter=',')

label = data[:,617]
data = data[:,0:617]
data = np.apply_along_axis(lambda x: x/np.linalg.norm(x),1,data)

som = MiniSom(10,10,617,sigma=1.0, learning_rate=0.5)

som.random_weights_init(data)
original_error = som.quantization_error(data)
print original_error

som.train_random(data, 5000)
print som.quantization_error(data)

### graphing
from pylab import plot,axis,show,pcolor,colorbar,bone
import random 

indexes = random.sample(range(0, len(label)), 500)
graph_target = label[indexes]
graph_data = data[indexes,]

t = np.zeros(len(graph_target),dtype=int)
# everything starts as 0
t[graph_target == 12] = 1
t[graph_target == 2] = 2
開發者ID:gnperdue,項目名稱:Quick-Data-Science-Experiments-2016,代碼行數:32,代碼來源:isolet.py


注:本文中的minisom.MiniSom.quantization_error方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。