本文整理匯總了Python中minisom.MiniSom.train_random方法的典型用法代碼示例。如果您正苦於以下問題:Python MiniSom.train_random方法的具體用法?Python MiniSom.train_random怎麽用?Python MiniSom.train_random使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類minisom.MiniSom
的用法示例。
在下文中一共展示了MiniSom.train_random方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: testSOMs
# 需要導入模塊: from minisom import MiniSom [as 別名]
# 或者: from minisom.MiniSom import train_random [as 別名]
def testSOMs():
from sklearn import datasets
from minisom import MiniSom
d = datasets.load_iris()
data = np.apply_along_axis(lambda x: x/np.linalg.norm(x), 1, d['data']) # data normalization
som = MiniSom(7, 7, 4, sigma=1.0, learning_rate=0.5)
som.random_weights_init(data)
print("Training...")
som.train_random(data, 1000) # random training
print("\n...ready!")
### Plotting the response for each pattern in the iris dataset ###
from pylab import plot,axis,show,pcolor,colorbar,bone
bone()
pcolor(som.distance_map().T) # plotting the distance map as background
colorbar()
t = d['target']
# use different colors and markers for each label
markers = ['o','s','D']
colors = ['r','g','b']
for cnt,xx in enumerate(data):
w = som.winner(xx) # getting the winner
# palce a marker on the winning position for the sample xx
plot(w[0]+.5,w[1]+.5,markers[t[cnt]],markerfacecolor='None',
markeredgecolor=colors[t[cnt]],markersize=12,markeredgewidth=2)
axis([0,som.weights.shape[0],0,som.weights.shape[1]])
show() # show the figure
示例2: SOM
# 需要導入模塊: from minisom import MiniSom [as 別名]
# 或者: from minisom.MiniSom import train_random [as 別名]
def SOM(data,leninput,lentarget):
som = MiniSom(16,16,leninput,sigma=1.0,learning_rate=0.5)
som.random_weights_init(data)
print("Training...")
som.train_random(data,10000) # training with 10000 iterations
print("\n...ready!")
numpy.save('weight_som',som.weights)
示例3: _minisomrandom
# 需要導入模塊: from minisom import MiniSom [as 別名]
# 或者: from minisom.MiniSom import train_random [as 別名]
def _minisomrandom(self):
"""Clusters sentence vectors using minisomrandom algorithm
Returns
-------
numpy ndarray
codebook (weights) of the trained SOM
"""
H = int(self.opts['size'])
W = int(self.opts['size'])
N = self.X.shape[1]
som = MiniSom(H, W, N, sigma=1.0, random_seed=1)
if self.opts['initialization']:
som.random_weights_init(self.X)
som.train_random(self.X, self.opts['niterations'])
return som.get_weights()
示例4: train_som
# 需要導入模塊: from minisom import MiniSom [as 別名]
# 或者: from minisom.MiniSom import train_random [as 別名]
def train_som(data, offset=None):
"""
offset: offset between points used for training
"""
if offset:
data = data[::offset, :]
som = MiniSom(
param['nr_rows'],
param['nr_cols'],
data.shape[1],
data,
sigma=param['sigma'],
learning_rate=param['learning_rate'],
norm='minmax')
#som.random_weights_init() # choose initial nodes from data points
som.train_random(param['nr_epochs']) # random training
return som
示例5: learn
# 需要導入模塊: from minisom import MiniSom [as 別名]
# 或者: from minisom.MiniSom import train_random [as 別名]
def learn(dataset,sigma=0.3,learning_rate=0.5,nb_iter=10000):
nb_sample, nb_features = dataset.shape
som = MiniSom(6,6,nb_features,sigma=sigma,learning_rate=learning_rate)
som.train_random(dataset,nb_iter)
return som
示例6: imread
# 需要導入模塊: from minisom import MiniSom [as 別名]
# 或者: from minisom.MiniSom import train_random [as 別名]
from pylab import imread,imshow,figure,show,subplot,title
from numpy import reshape,flipud,unravel_index,zeros
from minisom import MiniSom
# read the image
img = imread('tree.jpg')
# reshaping the pixels matrix
pixels = reshape(img,(img.shape[0]*img.shape[1],3))
# SOM initialization and training
print('training...')
som = MiniSom(3,3,3,sigma=0.1,learning_rate=0.2) # 3x3 = 9 final colors
som.random_weights_init(pixels)
starting_weights = som.weights.copy() # saving the starting weights
som.train_random(pixels,100)
print('quantization...')
qnt = som.quantization(pixels) # quantize each pixels of the image
print('building new image...')
clustered = zeros(img.shape)
for i,q in enumerate(qnt): # place the quantized values into a new image
clustered[unravel_index(i,dims=(img.shape[0],img.shape[1]))] = q
print('done.')
# show the result
figure(1)
subplot(221)
title('original')
imshow(flipud(img))
subplot(222)
示例7: MinMaxScaler
# 需要導入模塊: from minisom import MiniSom [as 別名]
# 或者: from minisom.MiniSom import train_random [as 別名]
# Importing the dataset
dataset = pd.read_csv('Credit_Card_Applications.csv')
X = dataset.iloc[:, :-1].values
y = dataset.iloc[:, -1].values
# Feature Scaling
from sklearn.preprocessing import MinMaxScaler
sc = MinMaxScaler(feature_range = (0, 1))
X = sc.fit_transform(X)
# Training the SOM
from minisom import MiniSom
som = MiniSom(x = 10, y = 10, input_len = 15, sigma = 1.0, learning_rate = 0.5)
som.random_weights_init(X)
som.train_random(data = X, num_iteration = 100)
# Visualizing the results
from pylab import bone, pcolor, colorbar, plot, show
bone()
pcolor(som.distance_map().T)
colorbar()
markers = ['o', 's']
colors = ['r', 'g']
for i, x in enumerate(X):
w = som.winner(x)
plot(w[0] + 0.5,
w[1] + 0.5,
markers[y[i]],
markeredgecolor = colors[y[i]],
markerfacecolor = 'None',
示例8: _parse_file_argument
# 需要導入模塊: from minisom import MiniSom [as 別名]
# 或者: from minisom.MiniSom import train_random [as 別名]
plt.pcolor(som.distance_map().T)
return fig, ax
RS = 20160101
if __name__ == '__main__':
args = _parse_file_argument()
data = pd.read_csv(args.csv)
data.fillna(0, inplace=True)
label_column = args.label_prefix
label_prefix = data[label_column].values
data.drop(label_column, axis=1, inplace=True)
label_column = args.label_sufix
label_sufix = data[label_column].values
data.drop(label_column, axis=1, inplace=True)
id_column = 'id'
data.drop(id_column, axis=1, inplace=True)
som = MiniSom(8,8,len(data.columns),sigma=1.0,learning_rate=0.5,random_seed=RS)
som.random_weights_init(data.as_matrix())
som.train_random(data.as_matrix(),100)
_plot_distribution(som)
plt.savefig('som.png', dpi=120)
示例9: If_running
# 需要導入模塊: from minisom import MiniSom [as 別名]
# 或者: from minisom.MiniSom import train_random [as 別名]
#.........這裏部分代碼省略.........
# use different colors and markers for each label
markers = ['o','s','D', '+']
colors = ['r','g','b', 'y']
for cnt,xx in enumerate(data):
w = self.som.winner(xx) # getting the winner
# place a marker on the winning position for the sample xx
tmp = self.axes.plot(w[0]+.5,w[1]+.5,markers[t[cnt]],markerfacecolor='None',
markeredgecolor=colors[t[cnt]],markersize=12,markeredgewidth=2)
self.axes.axis([0,self.som.weights.shape[0],0,self.som.weights.shape[1]])
#show() # show the figure
#print "drawing"
#self.figure.canvas.draw()
def init_som(self, widget=None, data=None):
##print self.data
### Initialization and training ###
cols = self.columns[self.combobox.get_active()]
data = self.data[:, 0:len(cols)]
#print len(cols)
self.som = MiniSom(self.width_spin_button.get_value_as_int(), self.height_spin_button.get_value_as_int(), len(cols),sigma=1.2,learning_rate=0.5)
# self.som.weights_init_gliozzi(data)
self.som.random_weights_init(data)
def train_som(self):
cols = self.columns[self.combobox.get_active()]
data = self.data[:, 0:len(cols)]
print("Training...")
#self.som.train_gliozzi(data) # Gliozzi et al training
self.som.train_random(data,20)
print("\n...ready!")
def make_treeview(self, data, liststore):
#i = 0
cols = self.columns[self.combobox.get_active()]
#print type(cols)
#print len(cols)
for d in data:
#i += 1
tmp = d.tolist()
#print 'tmp', tmp
#while len(tmp) < cols:
#tmp.append(False)
#print 'tmp', tmp
#cols = cols - 1
Qe = MiniSom.quantization_error_subset(self.som,d,len(cols))
#print tmp
tmp.append(Qe)
tmp.append(4 * Qe ** 0.5)
liststore.append(tmp)
treeview = gtk.TreeView(model=liststore)
#i = 0
for d in range(len(self.test_data[0])):
#print i
#i += 1
renderer_text = gtk.CellRendererText()
column_text = gtk.TreeViewColumn(self.pattern_labels[d], renderer_text, text=d)
treeview.append_column(column_text)
示例10: MiniSom
# 需要導入模塊: from minisom import MiniSom [as 別名]
# 或者: from minisom.MiniSom import train_random [as 別名]
model = Doc2Vec.load("../model/doc_model.mod")
doc_labels = random.sample(model.docvecs.doctags.keys(), 4000)
#### selection
doc_vecs = []
for label in doc_labels:
doc_vecs += [model.docvecs[label]]
doc_vecs = np.array(doc_vecs)
####
print "Clustering..."
N_CLUSTERS = 4
som = MiniSom(4, 4, 64, sigma=0.3, learning_rate=0.5)
som.train_random(doc_vecs, 100)
qnt = som.quantization(doc_vecs)
uniques = []
for i in qnt:
has_it = False
for elem in uniques:
if np.array_equal(elem, i):
has_it = True
if not has_it:
uniques += [i]
####
def get_similar_words(doc):
score_dict = {}
示例11: len
# 需要導入模塊: from minisom import MiniSom [as 別名]
# 或者: from minisom.MiniSom import train_random [as 別名]
# reading the iris dataset in the csv format
# (downloaded from http://aima.cs.berkeley.edu/data/iris.csv)
#rn = len(open('iris4.csv').readlines())
data = genfromtxt('data5.csv', delimiter=',',dtype = float)
data = numpy.nan_to_num(data)
print (data)
data = apply_along_axis(lambda x: x/linalg.norm(x),1,data) # data normalization
### Initialization and training ###
som = MiniSom(40,40,136,sigma=1.0,learning_rate=0.5)
som.random_weights_init(data)
print("Training...")
som.train_random(data,10000) # random training
print("\n...ready!")
### Plotting the response for each pattern in the iris dataset ###
from pylab import plot,axis,show,pcolor,colorbar,bone
bone()
pcolor(som.distance_map().T) # plotting the distance map as background
colorbar()
target = genfromtxt('class5.csv',delimiter=',',usecols=(0),dtype=int) # loadingthe labels
t = zeros(len(target),dtype=int)
print (target)
t[target == 0] = 0
t[target == 1] = 1
示例12: load_mPD
# 需要導入模塊: from minisom import MiniSom [as 別名]
# 或者: from minisom.MiniSom import train_random [as 別名]
PD
ProtNames
except:
mPD = load_mPD()
PD,ProtNames = load_PD()
R = Cluster.somcluster(mPD,transpose=1,nxgrid=40,nygrid=40,niter=1)
from minisom import MiniSom
### Initialization and training ###
som = MiniSom(40,40,15,sigma=1.0,learning_rate=0.5)
#som.random_weights_init(mPD)
som.weights
som.random_weights_init(transpose(mPD))
print("Training...")
som.train_random(transpose(mPD),100) # training with 100 iterations
print("\n...ready!")
timg = np.zeros(shape=(40,40))
for c in R[0]:
timg[c[0],c[1]]=timg[c[0],c[1]]+1
plt.figure()
plt.subplot(2,2,1)
plt.imshow(R[1][:,:,1])
plt.subplot(2,2,2)
plt.imshow(mean(R[1],axis=2))
plt.colorbar()
plt.subplot(2,2,3)
示例13: MiniSom
# 需要導入模塊: from minisom import MiniSom [as 別名]
# 或者: from minisom.MiniSom import train_random [as 別名]
tacitus = pickle.load(f)
f.close()
print "loaded data core"
data = tacitus.cv_21
num = tacitus.cv_21w
n_samples, n_features = data.shape
######################################
# Functional Code Below:
if mode == 1:
print "Using SOM"
drmap = MiniSom(50,50,6,sigma=.8,learning_rate=.5) # Replace 64 with the dimensions of desired target (6)
if fresh_data == 1:
print "Training..."
drmap.train_random(data,1500) # random training
print "\n...ready!"
elif fresh_data == 0:
print "Loading Data"
drmap.load_map()
# plotting the results
from pylab import text,show,cm,axis,figure,subplot,imshow,zeros
figure(1)
im = 0
result = np.array([])
for x,t in zip(data,num): # scatterplot
w = drmap.winner(x)
result.resize((im+1,3))
result[im][0]=w[0]
result[im][1]=w[1]
示例14: SomPage
# 需要導入模塊: from minisom import MiniSom [as 別名]
# 或者: from minisom.MiniSom import train_random [as 別名]
class SomPage(tk.Frame):
## UI 생성
def __init__(self, parent, controller):
## tk.Frame 초기화
tk.Frame.__init__(self, parent)
style.use("ggplot")
self.figure = pl.figure(1)
self.a = self.figure.add_subplot(111)
self.canvas = FigureCanvasTkAgg(self.figure, self)
self.canvas.get_tk_widget().grid(sticky="news")
self.canvas._tkcanvas.grid(sticky="news")
## Initialization
self.som = MiniSom(10,10,136,sigma=1.0,learning_rate=0.5)
####---------------------------------------------
## THREAD 생성
def callback_threaded(self, status):
self.queue = Queue() # 크기가 1인 버퍼
self.thread = Thread(target=self.training, args=(status,))
self.thread.daemon = True
self.thread.start()
self.queue.put(object()) ## 첫번째
print("Start")
self.queue.join() ## 네번째
self.thread.join()
self.plotting(status)
## size, learning_rate, training_count, target_count)
def training(self, status):
self.figure.clear()
self.queue.get() ## 두번째
## reading the dataset in the csv format
self.data = genfromtxt('iris6.csv', delimiter=',',dtype = float)
self.data = numpy.nan_to_num(self.data)
## data normalization
self.data = apply_along_axis(lambda x: x/linalg.norm(x),1,self.data)
self.som.random_weights_init(self.data)
print("Training...")
self.som.train_random(self.data,100) # random training
bone()
## plotting the distance map as background
pcolor(self.som.distance_map().T)
colorbar()
## loadingthe labels
target = genfromtxt('iris4_2.csv', delimiter=',', usecols=(0), dtype=int)
self.t = zeros(len(target),dtype=int)
print("...ready to plot...")
for i in range(len(target)):
self.t[target == i] = i
self.som.win_map(self.data)
self.queue.task_done() ## 세번째
def plotting(self, status):
self.figure = pl.figure(1)
self.a = self.figure.add_subplot(111)
print("Plotting...")
## use differet colors and markers for each label
## markers = []
colors = ['r','g','b','y','w','orange','black','pink','brown','purple']
## making bm file
with open('bm.txt', 'w') as f:
f.write(str(len(self.data))+'\n')
for cnt,xx in enumerate(self.data):
win = self.som.winner(xx) # getting the winner
# palce a marker on the winning position for the sample xx
self.a.plot(win[0]+.5,win[1]+.5,'.', markerfacecolor='None', markeredgecolor=colors[self.t[cnt]], markersize=1, markeredgewidth=1)
f.write(str(win[0])+'\t'+str(win[1])+'\t'+str(self.t[cnt])+'\n')
## making umx file
with open('umx.txt', 'w') as f:
for cnt,xx in enumerate(self.data):
win = self.som.winner(xx) # getting the winner
# palce a marker on the winning position for the sample xx
self.a.plot(win[0]+.5,win[1]+.5,'.',markerfacecolor='None',
markeredgecolor=colors[self.t[cnt]], markersize=1, markeredgewidth=1)
#.........這裏部分代碼省略.........
示例15: MiniSom
# 需要導入模塊: from minisom import MiniSom [as 別名]
# 或者: from minisom.MiniSom import train_random [as 別名]
import numpy as np
from minisom import MiniSom
data = np.genfromtxt('isolet1+2+3+4.data', delimiter=',')
label = data[:,617]
data = data[:,0:617]
data = np.apply_along_axis(lambda x: x/np.linalg.norm(x),1,data)
som = MiniSom(10,10,617,sigma=1.0, learning_rate=0.5)
som.random_weights_init(data)
original_error = som.quantization_error(data)
print original_error
som.train_random(data, 5000)
print som.quantization_error(data)
### graphing
from pylab import plot,axis,show,pcolor,colorbar,bone
import random
indexes = random.sample(range(0, len(label)), 500)
graph_target = label[indexes]
graph_data = data[indexes,]
t = np.zeros(len(graph_target),dtype=int)
# everything starts as 0
t[graph_target == 12] = 1
t[graph_target == 2] = 2