當前位置: 首頁>>代碼示例>>Python>>正文


Python Parallel.std方法代碼示例

本文整理匯總了Python中joblib.Parallel.std方法的典型用法代碼示例。如果您正苦於以下問題:Python Parallel.std方法的具體用法?Python Parallel.std怎麽用?Python Parallel.std使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在joblib.Parallel的用法示例。


在下文中一共展示了Parallel.std方法的2個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: len

# 需要導入模塊: from joblib import Parallel [as 別名]
# 或者: from joblib.Parallel import std [as 別名]
                    lytf += len(ytf)
                    lypf += len(ypf)
                if lytf == 0:
                    print('Warning: No steps annotation for', ex.id)
                    ch_r, lytf = 0, 1
                if lypf == 0:
                    ch_p, lypf = 0, 1
                return [ch_r/lytf, ch_p/lypf]

            del_PR = delayed(PR)

            PRS = Parallel(n_jobs=-2)(del_PR(ex) for ex in range(N))
            PRS = np.array([prs for prs in PRS if prs is not None])
            t_batch = time()-t_start
            score = list(PRS.mean(axis=0))
            score += list(PRS.std(axis=0))

            res['results'] += [score]
            res['patterns'] += [patterns]
        results += [res]
        t_batch = time() - t_start
        print('-'*79)
        print('Batch : {:03}/{:03}'.format(simu, n_batch))
        print('Time batch : {:.2f}s'.format(t_batch))

        print('Train: {}, Test: {}'.format(c_train[0], c_test[0]))
        print('Score: {0:.2f}({2:.2f}), {1:.2f} ({3:.2f})'
              ''.format(*(np.mean(res['results'], axis=0))))
        print('-'*79+'\n\n')
np.save('save_simu/cross_class_IEEE.npy', results)
開發者ID:jjmantilla,項目名稱:FilesM,代碼行數:32,代碼來源:cross_class_IEEE.py

示例2: bootstrap_rdm

# 需要導入模塊: from joblib import Parallel [as 別名]
# 或者: from joblib.Parallel import std [as 別名]

#.........這裏部分代碼省略.........
    if perm_idx_list is None:
        # with perm_idx_list, it's your own adventure.
        assert bootstrap_subject or bootstrap_condition, 'you must do bootstrap on something, unless you have idx list'
    # let's create reshaped rdms.
    ref_rdms_square = []
    model_rdms_square = []
    for ref_rdm in ref_rdms:
        assert ref_rdm.ndim == 1
        ref_rdms_square.append(squareform(ref_rdm))

    for model_rdm in model_rdms:  # here this model_rdms can be any iterable returing a 1d model rdm every time.
        assert model_rdm.ndim == 1
        model_rdms_square.append(squareform(model_rdm))

    ref_rdms_square = np.asarray(ref_rdms_square)
    model_rdms_square = np.asarray(model_rdms_square)

    assert ref_rdms_square.ndim == 3 and model_rdms_square.ndim == 3
    n_ref_rdm = ref_rdms_square.shape[0]
    n_model_rdm = model_rdms_square.shape[0]

    if legacy:
        assert not one_side, "legacy p-value computation only supports two side computation"
        if similarity_ref is None:  # for legacy, you can specify it to None
            similarity_ref = np.zeros((n_model_rdm,))

    assert similarity_ref.shape == (n_model_rdm,)
    rdm_h, rdm_w = ref_rdms_square.shape[1:]
    assert (rdm_h, rdm_w) == model_rdms_square.shape[1:] and rdm_h == rdm_w

    if perm_idx_list is None:
        rng_state_subject = np.random.RandomState(rng_state_subject_seed)
        rng_state_condition = np.random.RandomState(rng_state_condition_seed)
        if bootstrap_subject:
            perm_idx_list_subject_generator = (rng_state_subject.randint(n_ref_rdm, size=(n_ref_rdm,)) for _ in
                                               range(n))
        else:
            perm_idx_list_subject_generator = (np.arange(n_ref_rdm) for _ in range(n))

        if bootstrap_condition:
            perm_idx_list_condition_generator = (rng_state_condition.randint(rdm_h, size=(rdm_h,)) for _ in range(n))
        else:
            perm_idx_list_condition_generator = (np.arange(rdm_h) for _ in range(n))

        # subject then condition.
        perm_idx_list = izip(perm_idx_list_subject_generator, perm_idx_list_condition_generator)

        if debug:
            perm_idx_list = list(perm_idx_list)

    bootstrap_rdm_helper_partial = partial(bootstrap_rdm_helper,
                                           n_model_rdm=n_model_rdm,
                                           similarity_type=similarity_type,
                                           computation_method=computation_method)

    # then collect all.
    if parallel:
        similarity_all_bootstrap = Parallel(n_jobs=n_jobs, verbose=verbose, max_nbytes=max_nbytes)(
            delayed(bootstrap_rdm_helper_partial)(perm_idx, ref_rdms_square, model_rdms_square) for perm_idx in
            perm_idx_list)
    else:
        similarity_all_bootstrap = [bootstrap_rdm_helper_partial(perm_idx, ref_rdms_square, model_rdms_square) for
                                    perm_idx in perm_idx_list]
    similarity_all_bootstrap = np.asarray(similarity_all_bootstrap).T
    assert similarity_all_bootstrap.shape == (n_model_rdm, n)

    # then let's do the statistical analysis.
    # use ddof to be 1 to be more correct, since we are now doing statistical analysis.
    error_bars = similarity_all_bootstrap.std(axis=1, ddof=1)
    assert error_bars.shape == (n_model_rdm,)
    pairwise_p_matrix = np.empty((n_model_rdm, n_model_rdm))

    p_matrix_it = np.nditer(pairwise_p_matrix, flags=['multi_index'], op_flags=[['writeonly']])
    similarity_ref_diff = similarity_ref[:, np.newaxis] - similarity_ref[np.newaxis, :]
    assert similarity_ref_diff.shape == (n_model_rdm, n_model_rdm)
    while not p_matrix_it.finished:
        i_row, j_col = p_matrix_it.multi_index
        if i_row == j_col:
            p_matrix_it[0] = np.nan
        else:
            # get the differences.
            similarity_diff = similarity_ref_diff[i_row, j_col]
            similarity_diff_bootstrap = similarity_all_bootstrap[i_row] - similarity_all_bootstrap[j_col]
            similarity_diff_bootstrap_normed = similarity_diff_bootstrap - similarity_diff_bootstrap.mean()
            if one_side:
                p_matrix_it[0] = np.mean(similarity_diff_bootstrap_normed > similarity_diff)
            else:
                if legacy:
                    p_matrix_it[0] = 2 * min(np.mean(similarity_diff_bootstrap < 0),
                                             np.mean(similarity_diff_bootstrap > 0))
                else:
                    p_matrix_it[0] = np.mean(abs(similarity_diff_bootstrap_normed) > abs(similarity_diff))
        p_matrix_it.iternext()

    return_result = {'bootstrap_similarity': similarity_all_bootstrap,
                     'bootstrap_std': error_bars,
                     'pairwise_p_matrix': pairwise_p_matrix}
    if debug:
        return_result['perm_idx_list'] = perm_idx_list
    return return_result
開發者ID:leelabcnbc,項目名稱:early-vision-toolbox,代碼行數:104,代碼來源:rsa.py


注:本文中的joblib.Parallel.std方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。