本文整理匯總了Python中joblib.Parallel類的典型用法代碼示例。如果您正苦於以下問題:Python Parallel類的具體用法?Python Parallel怎麽用?Python Parallel使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。
在下文中一共展示了Parallel類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: auto_choose
def auto_choose(actionfile, new_xyz, nparallel=-1):
"""
@param demofile: h5py.File object
@param new_xyz : new rope point-cloud
@nparallel : number of parallel jobs to run for tps cost calculaion.
If -1 only 1 job is used (no parallelization).
@return : return the name of the segment with the lowest warping cost.
"""
if not nparallel == -1:
from joblib import Parallel, delayed
nparallel = min(nparallel, 8)
demo_data = actionfile.items()
if nparallel != -1:
before = time.time()
redprint("auto choose parallel with njobs = %d"%nparallel)
costs = Parallel(n_jobs=nparallel, verbose=0)(delayed(registration_cost)(ddata[1]['cloud_xyz'][:], new_xyz) for ddata in demo_data)
after = time.time()
print "Parallel registration time in seconds =", after - before
else:
costs = []
redprint("auto choose sequential..")
for i, ddata in enumerate(demo_data):
costs.append(registration_cost(ddata[1]['cloud_xyz'][:], new_xyz))
print(("tps-cost completed %i/%i" % (i + 1, len(demo_data))))
ibest = np.argmin(costs)
redprint ("auto choose returning..")
return demo_data[ibest][0]
示例2: __init__
def __init__(self):
global transport
variables = ['meridional_transport','psi']
num_cores = 6
data = np.ones((len(variables),len(scow.months),scow.latitude.shape[0],scow.longitude.shape[0]))*np.nan
beta = c.beta.repeat(scow.longitude.shape[0]).reshape((c.beta.shape[0],scow.longitude.shape[0]))
for i in xrange(scow.data.shape[1]):
transport = scow.data[2,i,:,:]/beta
psi = Parallel(n_jobs=num_cores)(delayed(integration)(lat) for lat in scow.latitude)
psi = np.array(psi)
D = np.array([transport.copy()/(c.rho*1.e+6),psi.copy()/(c.rho*1.e+6)])
data[:,i,:,:] = D
del transport
# Here I could derive psi in y and get the zonal sverdrup transport (I think I won't need it)
# "Isolating" the subtropical gyre
ibad = (np.abs(scow.latitude) <= 5) | (np.abs(scow.latitude) >= 50)
data[:,:,ibad,:] = np.nan
self.latitude = scow.latitude
self.longitude = scow.longitude
self.variables = variables
self.data = data
示例3: load_glm_inputs
def load_glm_inputs(study_dirs, hrf_model='canonical', drift_model='cosine',
img_ext='nii.gz', memory=Memory(None), n_jobs=1):
"""Returns data (almost) ready to be used for a GLM.
"""
datasets, structural, functional, conditions, contrasts = \
collect_openfmri(study_dirs, img_ext=img_ext, memory=memory, n_jobs=n_jobs)
main = functional.merge(conditions)
# computing design matrices
print 'Computing models...'
results = Parallel(n_jobs=n_jobs, pre_dispatch='n_jobs')(
delayed(memory.cache(_make_design_matrix))(
run_df, hrf_model, drift_model, orthogonalize=datasets[group_id[0]]['models'][group_id[2]]['orthogonalize'])
for group_id, group_df in main.groupby(['study', 'subject', 'model'])
for run_id, run_df in group_df.groupby(['task', 'run'])
)
# collect results
print 'Collecting...'
glm_inputs = {}
for group_id, group_df in main.groupby(['study', 'subject', 'model']):
study_id, subject_id, model_id = group_id
for session_id, run_df in group_df.groupby(['task', 'run']):
task_id, run_id = session_id
bold_file, dm = results.pop(0)
glm_inputs.setdefault(group_id, {}).setdefault('bold', []).append(bold_file)
glm_inputs.setdefault(group_id, {}).setdefault('design', []).append(dm)
glm_inputs.setdefault(group_id, {}).setdefault(
model_id, _make_contrasts(datasets, study_id, model_id, hrf_model, group_df))
glm_inputs.setdefault(group_id, {}).setdefault(
'%s_per_run' % model_id, _make_contrasts(
datasets, study_id, model_id, hrf_model, group_df, per_run=True))
return glm_inputs
示例4: preprocess
def preprocess(file_in, file_out, test=False, n_jobs=6):
"""
This function preprocesses raw data file.
For each row and for each feature it extracts aggregations over TimeToEnd:
From feature TimeToEnd it extracts total time ("time") and number of observations ("n_obs")
From feature DistanceToRadar it extracts aggregations ('min', '50% quantile', 'mean', 'max')
For any other features it calculates ('mean', 'std', 'min', '50% quantile', 'max')
New features names follow the pattern: <feature name>_<aggregation function>
Parameters
----------
:param file_in: str
csv-file name for data to be preprocessed
:param file_out: str
csv-file name for output data
:param test: bool
indicator for test data (data without label)
:return:
"""
# Load data to pandas.DataFrame
data_raw = pd.read_csv(file_in, na_filter=False, chunksize=5000)
# Apply transformations to data chunks in parallel
start = time.time()
data = Parallel(n_jobs=n_jobs, verbose=11)(delayed(foo)(x, transform, axis=1, test=test) for i, x in enumerate(data_raw))
print "Preprocessing time: ", round((time.time() - start) / 60, 3)
print "Records: ", len(data)
# Join data chunks and save result to csv
data = pd.concat(data)
data.to_csv(file_out, index=False)
print "File", file_in, "preprocessed to", file_out
示例5: main
def main():
parser = argparse.ArgumentParser(description='Register & align images')
parser.add_argument('filenames',nargs='+',help='List of target files to register. Images are aligned to first in list.')
parser.add_argument('-odir',metavar='outdir',required=True,type=str,help='Output directory for files.')
parser.add_argument('-m',metavar='method',choices=('point','extended'),default='extended',help='Specify alignment method (point or extended); default=extended.')
parser.add_argument('-xy',nargs=2,type=float,default=None,help='Specify approximate "x y" pixel coordinate of object to centroid on. Required for point mode; useful for extended mode (default=center of image).')
parser.add_argument('-box',nargs=2,type=int,default=None,help='Specify box size (w h) to restrict alignment search. Useful for both point & extended modes (default=full size of array).')
parser.add_argument('--c',action='store_true',help='Clobber (overwrite) on output')
parser.add_argument('-njobs',type=int,default=1,help='Process images in parallel. "-1" is all CPUs (default=1).')
args = parser.parse_args()
if args.m == 'point' and args.xy is None:
parser.error("-m point requires -xy coordinate")
# create output directory
if args.odir not in ['','.']:
makedirs(args.odir,exist_ok=True)
# align all images to first filename
ref = args.filenames[0]
align = args.filenames[1:]
imref = partial(register,ref=ref,outdir=args.odir,
method=args.m,center=args.xy,size=args.box,
overwrite=args.c)
outfiles = Parallel(n_jobs=args.njobs,verbose=11)(delayed(imref)(toshift=a) for a in align)
# Write ref to outdir
refnew = os.path.join(args.odir,os.path.basename(ref))
copy(ref,refnew)
outfiles.append(refnew)
print('Wrote %i files to %s' % (len(outfiles), args.odir))
示例6: find_closest_auto
def find_closest_auto(demofile, new_xyz):
if args.parallel:
from joblib import Parallel, delayed
demo_clouds = [asarray(seg["cloud_xyz"]) for seg in demofile.values()]
keys = demofile.keys()
if args.parallel:
costs = Parallel(n_jobs=3,verbose=100)(delayed(registration_cost)(demo_cloud, new_xyz) for demo_cloud in demo_clouds)
else:
costs = []
for (i,ds_cloud) in enumerate(demo_clouds):
costs.append(registration_cost(ds_cloud, new_xyz))
print "completed %i/%i"%(i+1, len(demo_clouds))
print "costs\n",costs
if args.show_neighbors:
nshow = min(5, len(keys))
import cv2, rapprentice.cv_plot_utils as cpu
sortinds = np.argsort(costs)[:nshow]
near_rgbs = [asarray(demofile[keys[i]]["rgb"]) for i in sortinds]
bigimg = cpu.tile_images(near_rgbs, 1, nshow)
cv2.imshow("neighbors", bigimg)
print "press any key to continue"
cv2.waitKey()
ibest = np.argmin(costs)
return keys[ibest]
示例7: analysis
def analysis(self, permute=False):
"""
Classify based an iteratively increasing the number of features (electrodes) included in the model. Starts with
the single best electrode (N=1) and increase until N = the number of electrodes.
Note: permute is not used in this analysis, but kept to match the same signature as super.
"""
if self.subject_data is None:
print('%s: compute or load data first with .load_data()!' % self.subject)
# Get recalled or not labels
if self.recall_filter_func is None:
print('%s classifier: please provide a .recall_filter_func function.' % self.subject)
y = self.recall_filter_func(self.subject_data)
# zscore the data by session
x = self.zscore_data()
# create the classifier
classifier = LogisticRegression(C=self.C, penalty=self.norm, solver='liblinear')
# create .num_rand_splits of cv_dicts
cv_dicts = [self._make_cross_val_labels() for _ in range(self.num_rand_splits)]
# run permutations with joblib
f = _par_compute_and_run_split
if self.use_joblib:
aucs = Parallel(n_jobs=12, verbose=5)(delayed(f)(cv, classifier, x, y) for cv in cv_dicts)
else:
aucs = []
for cv in tqdm(cv_dicts):
aucs.append(f(cv, classifier, x, y))
# store results
self.res['auc_x_n'] = np.stack(aucs)
示例8: best_classifier
def best_classifier(X,Y,Xvs,Yvs):
parameters = {'C':[3,13,67,330,1636,8103]}
pg = ParameterGrid(parameters)
clas = Parallel(n_jobs=4)(delayed(pfit)(p,X,Y,Xvs,Yvs) for p in pg)
clas.sort(reverse=True)
(sc,cla) = clas[0]
print '-'*20
print 'best is ',cla,sc
print '-'*20
return cla,sc
示例9: retrieve_proposals
def retrieve_proposals(video_info, model, feature_filename,
feat_size=16, stride_intersection=0.1):
"""Retrieve proposals for a given video.
Parameters
----------
video_info : DataFrame
DataFrame containing the 'video-name' and 'video-frames'.
model : dict
Dictionary containing the learned model.
Keys:
'D': 2darray containing the sparse dictionary.
'cost': Cost function at the last iteration.
'durations': 1darray containing typical durations (n-frames)
in the training set.
'type': Dictionary type.
feature_filename : str
String containing the path to the HDF5 file containing
the features for each video. The HDF5 file must contain
a group for each video where the id of the group is the name
of the video; and each group must contain a dataset containing
the features.
feat_size : int, optional
Size of the temporal extension of the features.
stride_intersection : float, optional
Percentage of intersection between temporal windows.
"""
feat_obj = FeatHelper(feature_filename, t_stride=1)
candidate_df = generate_candidate_proposals(video_info, model['durations'],
feat_size, stride_intersection)
D = model['D']
params = model['params']
feat_obj.open_instance()
feat_stack = feat_obj.read_feat(video_info['video-name'])
feat_obj.close_instance()
n_feats = feat_stack.shape[0]
candidate_df = candidate_df[
(candidate_df['f-init'] + candidate_df['n-frames']) <= n_feats]
candidate_df = candidate_df.reset_index(drop=True)
proposal_df = Parallel(n_jobs=-1)(delayed(wrapper_score_proposals)(this_df,
D,
feat_stack,
params,
feat_size)
for k, this_df in candidate_df.iterrows())
proposal_df = pd.concat(proposal_df, axis=1).T
proposal_df['score'] = (
proposal_df['score'] - proposal_df['score'].min()) / (
proposal_df['score'].max() - proposal_df['score'].min())
proposal_df['score'] = np.abs(proposal_df['score'] - 1.0)
proposal_df = proposal_df.loc[proposal_df['score'].argsort()[::-1]]
proposal_df = proposal_df.rename(columns={'n-frames': 'f-end'})
proposal_df['f-end'] = proposal_df['f-init'] + proposal_df['f-end'] - 1
return proposal_df.reset_index(drop=True)
示例10: basic_compute_loop
def basic_compute_loop(compute_function,looper,run_parallel=True,debug=False):
"""Canonical form of the basic compute loop."""
start = time.time()
if run_parallel:
incoming = Parallel(n_jobs=8,verbose=10 if debug else 0)(
delayed(compute_function,has_shareable_memory)(**looper[ll])
for ll in framelooper(len(looper),start=start))
else:
incoming = []
for ll in framelooper(len(looper)):
incoming.append(compute_function(**looper[ll]))
return incoming
示例11: auto_choose
def auto_choose(actionfile, new_xyz, softmin_k = 1, softmin_alpha = 1, nparallel=-1):
"""
@param demofile : h5py.File object
@param new_xyz : new rope point-cloud
@param softmin : use softmin distribution over first <softmin> demonstrations
set to 1 for nearest neighbor
@param nparallel : number of parallel jobs to run for tps cost calculaion
set to -1 for no parallelization
@return : return the name of the segment with the lowest warping cost.
"""
if not nparallel == -1:
from joblib import Parallel, delayed
nparallel = min(nparallel, 8)
demo_data = actionfile.items()
if nparallel != -1:
before = time.time()
redprint("auto choose parallel with njobs = %d"%nparallel)
costs = Parallel(n_jobs=nparallel, verbose=100)(delayed(registration_cost)(ddata[1]['cloud_xyz'][:], new_xyz) for ddata in demo_data)
after = time.time()
print "Parallel registration time in seconds =", after - before
else:
costs = []
redprint("auto choose sequential..")
for i, ddata in enumerate(demo_data):
costs.append(registration_cost(ddata[1]['cloud_xyz'][:], new_xyz))
print(("tps-cost completed %i/%i" % (i + 1, len(demo_data))))
# use a random draw from the softmin distribution
demo_costs = zip(costs, demo_data)
if softmin_k == 1:
ibest = np.argmin(costs)
return demo_data[ibest][0]
best_k_demos = np.asarray(sorted(demo_costs)[:softmin_k])
best_k_exps = np.exp(-1*softmin_alpha*float(best_k_demos[:, 0])) #multiply by -1 b/c we're actually min-ing
if len(best_k_exps) > 1:
denom = sum(best_k_exps)
else:
denom = best_k_exps
mass_fn = best_k_exps/denom
draw = random.random()
for i in range(best_k_demos):
if draw <= mass_fn[i]:
ret_val = demo_data[i][0]
break
draw -= mass_fn[i]
redprint ("auto choose returning..")
return ret_val
示例12: train
def train(self):
regressors = []
if self.parallel:
regressors = Parallel(n_jobs=-1)(delayed(trainBin)(self.params[b], np.atleast_2d(self.ind).T, self.dep[b],self.indWeights) for b in self.OD.bins)
else:
for b in self.OD.bins:
regressors.append(trainBin(self.params[b],np.atleast_2d(self.ind).T, self.dep[b],self.indWeights))
#self.svr[b] = SVR(cache_size=1000,kernel='rbf', C=self.params[b]['C'], gamma=self.params[b]['gamma'])
#self.svr[b].fit(np.array([self.ind]).T,self.dep[b])
for i,model in enumerate(regressors):
self.svr[self.OD.bins[i]] = model
示例13: extract_all_class_features
def extract_all_class_features(dataset, n_jobs=1, stride=5, patch_size=10):
"""Extract masked features from all dataset images, return features and labels"""
cns = []
labels = []
for (label, cls) in enumerate(dataset.classes):
print 'Extracting masked CNs from class {}'.format(cls)
hists = Parallel(n_jobs=n_jobs)(delayed(extract_masked_cns)(imname, maskname) for (imname, maskname) in dataset.get_class_images(cls))
hists = np.vstack(hists)
labels.append(label * np.ones((len(hists),), dtype=np.float32))
cns.append(hists.astype(np.float32))
# Stack lists in numpy arrays.
return (cns, labels)
示例14: create_training_data
def create_training_data():
num_cores = 8
# getting total number of trips
list_of_files = [[folder, f.replace('.csv','')] for folder in os.listdir('drivers') if 'DS_Store' not in folder
for f in os.listdir('drivers/'+folder) if '.csv' in f]
raw_data = Parallel( n_jobs=num_cores )(delayed(create_attributes)(i) for i in list_of_files)
raw_data = pd.DataFrame(raw_data)
raw_data.columns = ['driver_trip','trip_time','total_distance','skyway_distance','avg_speed','std_speed',
'avg_speed_up','avg_speed_down',
'avg_acc','std_acc','avg_turn','std_turn','standing_time','standing_speed']
# save to file for later training
raw_data.to_csv('training_set.csv', index=False)
return raw_data
示例15: predict
def predict(self, test_set=True, location=None):
Y, self.locations = self.data.get_y(location=location)
t = self.data.observations['time'].values
t = self._split_dataset(t, test_set=test_set)
Y = self._split_dataset(Y, test_set=test_set)
yhat_jobs = []
ytrue =[]
yoccur_jobs = []
if not self.nearest_neighbor:
X = self.data.get_X()
X = self._split_dataset(X, test_set=test_set)
if self.xtransform is not None:
X = self.xtrans.transform(X)
for j, row in self.locations.iterrows():
if self.nearest_neighbor:
X = self.data.get_nearest_X(row[self.data.reanalysis_latdim],
row[self.data.reanalysis_londim])
X = self._split_dataset(X, test_set=test_set)
if self.xtransform is not None:
X = self.xtrans[j].transform(X)
if self.conditional is not None:
yoccur_jobs += [delayed(worker_predict_prob)(self.occurance_models[j], copy.deepcopy(X))]
yhat_jobs += [delayed(worker_predict)(self.models[j], copy.deepcopy(X))]
ytrue += [Y[:, j]]
yhat = Parallel(n_jobs=self.num_proc)(yhat_jobs)
if self.ytransform is not None:
transform_jobs = [delayed(worker_invtrans)(self.ytrans[j], yhat[j]) for j in
range(len(yhat))]
yhat = Parallel(n_jobs=self.num_proc)(transform_jobs)
yhat = numpy.vstack(yhat).T
ytrue = numpy.vstack(ytrue).T
yhat = self.to_xarray(yhat, t).rename({"value": "projected"})
ytrue = self.to_xarray(ytrue, t).rename({"value": "ground_truth"})
if self.conditional is not None:
yoccur = Parallel(n_jobs=self.num_proc)(yoccur_jobs)
yoccur = numpy.vstack(yoccur).T > 0.5
yoccur = self.to_xarray(yoccur, t).rename({"value": "occurance"})
yhat['projected'] = yhat['projected']*yoccur['occurance']
yhat = yhat.merge(yoccur)
out = yhat.merge(ytrue)
out['error'] = out.projected - out.ground_truth
return out