本文整理匯總了Python中joblib.Parallel.append方法的典型用法代碼示例。如果您正苦於以下問題:Python Parallel.append方法的具體用法?Python Parallel.append怎麽用?Python Parallel.append使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類joblib.Parallel
的用法示例。
在下文中一共展示了Parallel.append方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: analysis
# 需要導入模塊: from joblib import Parallel [as 別名]
# 或者: from joblib.Parallel import append [as 別名]
def analysis(self, permute=False):
"""
Classify based an iteratively increasing the number of features (electrodes) included in the model. Starts with
the single best electrode (N=1) and increase until N = the number of electrodes.
Note: permute is not used in this analysis, but kept to match the same signature as super.
"""
if self.subject_data is None:
print('%s: compute or load data first with .load_data()!' % self.subject)
# Get recalled or not labels
if self.recall_filter_func is None:
print('%s classifier: please provide a .recall_filter_func function.' % self.subject)
y = self.recall_filter_func(self.subject_data)
# zscore the data by session
x = self.zscore_data()
# create the classifier
classifier = LogisticRegression(C=self.C, penalty=self.norm, solver='liblinear')
# create .num_rand_splits of cv_dicts
cv_dicts = [self._make_cross_val_labels() for _ in range(self.num_rand_splits)]
# run permutations with joblib
f = _par_compute_and_run_split
if self.use_joblib:
aucs = Parallel(n_jobs=12, verbose=5)(delayed(f)(cv, classifier, x, y) for cv in cv_dicts)
else:
aucs = []
for cv in tqdm(cv_dicts):
aucs.append(f(cv, classifier, x, y))
# store results
self.res['auc_x_n'] = np.stack(aucs)
示例2: auto_choose
# 需要導入模塊: from joblib import Parallel [as 別名]
# 或者: from joblib.Parallel import append [as 別名]
def auto_choose(actionfile, new_xyz, nparallel=-1):
"""
@param demofile: h5py.File object
@param new_xyz : new rope point-cloud
@nparallel : number of parallel jobs to run for tps cost calculaion.
If -1 only 1 job is used (no parallelization).
@return : return the name of the segment with the lowest warping cost.
"""
if not nparallel == -1:
from joblib import Parallel, delayed
nparallel = min(nparallel, 8)
demo_data = actionfile.items()
if nparallel != -1:
before = time.time()
redprint("auto choose parallel with njobs = %d"%nparallel)
costs = Parallel(n_jobs=nparallel, verbose=0)(delayed(registration_cost)(ddata[1]['cloud_xyz'][:], new_xyz) for ddata in demo_data)
after = time.time()
print "Parallel registration time in seconds =", after - before
else:
costs = []
redprint("auto choose sequential..")
for i, ddata in enumerate(demo_data):
costs.append(registration_cost(ddata[1]['cloud_xyz'][:], new_xyz))
print(("tps-cost completed %i/%i" % (i + 1, len(demo_data))))
ibest = np.argmin(costs)
redprint ("auto choose returning..")
return demo_data[ibest][0]
示例3: main
# 需要導入模塊: from joblib import Parallel [as 別名]
# 或者: from joblib.Parallel import append [as 別名]
def main():
parser = argparse.ArgumentParser(description='Register & align images')
parser.add_argument('filenames',nargs='+',help='List of target files to register. Images are aligned to first in list.')
parser.add_argument('-odir',metavar='outdir',required=True,type=str,help='Output directory for files.')
parser.add_argument('-m',metavar='method',choices=('point','extended'),default='extended',help='Specify alignment method (point or extended); default=extended.')
parser.add_argument('-xy',nargs=2,type=float,default=None,help='Specify approximate "x y" pixel coordinate of object to centroid on. Required for point mode; useful for extended mode (default=center of image).')
parser.add_argument('-box',nargs=2,type=int,default=None,help='Specify box size (w h) to restrict alignment search. Useful for both point & extended modes (default=full size of array).')
parser.add_argument('--c',action='store_true',help='Clobber (overwrite) on output')
parser.add_argument('-njobs',type=int,default=1,help='Process images in parallel. "-1" is all CPUs (default=1).')
args = parser.parse_args()
if args.m == 'point' and args.xy is None:
parser.error("-m point requires -xy coordinate")
# create output directory
if args.odir not in ['','.']:
makedirs(args.odir,exist_ok=True)
# align all images to first filename
ref = args.filenames[0]
align = args.filenames[1:]
imref = partial(register,ref=ref,outdir=args.odir,
method=args.m,center=args.xy,size=args.box,
overwrite=args.c)
outfiles = Parallel(n_jobs=args.njobs,verbose=11)(delayed(imref)(toshift=a) for a in align)
# Write ref to outdir
refnew = os.path.join(args.odir,os.path.basename(ref))
copy(ref,refnew)
outfiles.append(refnew)
print('Wrote %i files to %s' % (len(outfiles), args.odir))
示例4: find_closest_auto
# 需要導入模塊: from joblib import Parallel [as 別名]
# 或者: from joblib.Parallel import append [as 別名]
def find_closest_auto(demofile, new_xyz):
if args.parallel:
from joblib import Parallel, delayed
demo_clouds = [asarray(seg["cloud_xyz"]) for seg in demofile.values()]
keys = demofile.keys()
if args.parallel:
costs = Parallel(n_jobs=3,verbose=100)(delayed(registration_cost)(demo_cloud, new_xyz) for demo_cloud in demo_clouds)
else:
costs = []
for (i,ds_cloud) in enumerate(demo_clouds):
costs.append(registration_cost(ds_cloud, new_xyz))
print "completed %i/%i"%(i+1, len(demo_clouds))
print "costs\n",costs
if args.show_neighbors:
nshow = min(5, len(keys))
import cv2, rapprentice.cv_plot_utils as cpu
sortinds = np.argsort(costs)[:nshow]
near_rgbs = [asarray(demofile[keys[i]]["rgb"]) for i in sortinds]
bigimg = cpu.tile_images(near_rgbs, 1, nshow)
cv2.imshow("neighbors", bigimg)
print "press any key to continue"
cv2.waitKey()
ibest = np.argmin(costs)
return keys[ibest]
示例5: basic_compute_loop
# 需要導入模塊: from joblib import Parallel [as 別名]
# 或者: from joblib.Parallel import append [as 別名]
def basic_compute_loop(compute_function,looper,run_parallel=True,debug=False):
"""Canonical form of the basic compute loop."""
start = time.time()
if run_parallel:
incoming = Parallel(n_jobs=8,verbose=10 if debug else 0)(
delayed(compute_function,has_shareable_memory)(**looper[ll])
for ll in framelooper(len(looper),start=start))
else:
incoming = []
for ll in framelooper(len(looper)):
incoming.append(compute_function(**looper[ll]))
return incoming
示例6: auto_choose
# 需要導入模塊: from joblib import Parallel [as 別名]
# 或者: from joblib.Parallel import append [as 別名]
def auto_choose(actionfile, new_xyz, softmin_k = 1, softmin_alpha = 1, nparallel=-1):
"""
@param demofile : h5py.File object
@param new_xyz : new rope point-cloud
@param softmin : use softmin distribution over first <softmin> demonstrations
set to 1 for nearest neighbor
@param nparallel : number of parallel jobs to run for tps cost calculaion
set to -1 for no parallelization
@return : return the name of the segment with the lowest warping cost.
"""
if not nparallel == -1:
from joblib import Parallel, delayed
nparallel = min(nparallel, 8)
demo_data = actionfile.items()
if nparallel != -1:
before = time.time()
redprint("auto choose parallel with njobs = %d"%nparallel)
costs = Parallel(n_jobs=nparallel, verbose=100)(delayed(registration_cost)(ddata[1]['cloud_xyz'][:], new_xyz) for ddata in demo_data)
after = time.time()
print "Parallel registration time in seconds =", after - before
else:
costs = []
redprint("auto choose sequential..")
for i, ddata in enumerate(demo_data):
costs.append(registration_cost(ddata[1]['cloud_xyz'][:], new_xyz))
print(("tps-cost completed %i/%i" % (i + 1, len(demo_data))))
# use a random draw from the softmin distribution
demo_costs = zip(costs, demo_data)
if softmin_k == 1:
ibest = np.argmin(costs)
return demo_data[ibest][0]
best_k_demos = np.asarray(sorted(demo_costs)[:softmin_k])
best_k_exps = np.exp(-1*softmin_alpha*float(best_k_demos[:, 0])) #multiply by -1 b/c we're actually min-ing
if len(best_k_exps) > 1:
denom = sum(best_k_exps)
else:
denom = best_k_exps
mass_fn = best_k_exps/denom
draw = random.random()
for i in range(best_k_demos):
if draw <= mass_fn[i]:
ret_val = demo_data[i][0]
break
draw -= mass_fn[i]
redprint ("auto choose returning..")
return ret_val
示例7: train
# 需要導入模塊: from joblib import Parallel [as 別名]
# 或者: from joblib.Parallel import append [as 別名]
def train(self):
regressors = []
if self.parallel:
regressors = Parallel(n_jobs=-1)(delayed(trainBin)(self.params[b], np.atleast_2d(self.ind).T, self.dep[b],self.indWeights) for b in self.OD.bins)
else:
for b in self.OD.bins:
regressors.append(trainBin(self.params[b],np.atleast_2d(self.ind).T, self.dep[b],self.indWeights))
#self.svr[b] = SVR(cache_size=1000,kernel='rbf', C=self.params[b]['C'], gamma=self.params[b]['gamma'])
#self.svr[b].fit(np.array([self.ind]).T,self.dep[b])
for i,model in enumerate(regressors):
self.svr[self.OD.bins[i]] = model
示例8: run_all
# 需要導入模塊: from joblib import Parallel [as 別名]
# 或者: from joblib.Parallel import append [as 別名]
def run_all(cnf, samples, process_one, finalize_one, finalize_all):
if len(samples) == 1:
sample_name, sample_cnf = samples.items()[0]
run_one(sample_cnf, process_one, finalize_one)
else:
results = []
if cnf.get('parallel'):
try:
from joblib import Parallel, delayed
except ImportError:
critical(
'\nERROR: Joblib not found. You may want samples to be processed '
'in parallel, in this case, make sure python joblib intalled. '
'(pip install joblib).')
else:
for sample_name, sample_cnf in samples.items():
sample_cnf['verbose'] = False
results = Parallel(n_jobs=len(samples)) \
(delayed(run_one)(sample_cnf, process_one, finalize_one,
multiple_samples=True)
for sample_name, sample_cnf in samples.items())
else:
results = []
for sample_name, sample_cnf in samples.items():
results.append(
run_one(sample_cnf, process_one, finalize_one,
multiple_samples=True))
if samples:
info('')
info('*' * 70)
info('Results for each sample:')
finalize_all(cnf, samples, results)
# Cleaning
for name, data in samples.items():
work_dirpath = data['work_dir']
tx_dirpath = join(work_dirpath, 'tx')
if isdir(tx_dirpath):
shutil.rmtree(tx_dirpath)
if not data.get('keep_intermediate') \
and isdir(work_dirpath):
shutil.rmtree(work_dirpath)
示例9: auto_choose
# 需要導入模塊: from joblib import Parallel [as 別名]
# 或者: from joblib.Parallel import append [as 別名]
def auto_choose(demofile, new_xyz, only_original_segments):
"""
@param demofile:
@param new_xyz:
@param only_original_segments: if true, then only the original_segments will be registered with
@return:
"""
import pprint
"""Return the segment with the lowest warping cost. Takes about 2 seconds."""
parallel = True
if parallel:
from joblib import Parallel, delayed
items = demofile.items()
if only_original_segments:
#remove all derived segments from items
print("Only registering with the original segments")
items = [item for item in items if not "derived" in item[1].keys()]
unzipped_items = zip(*items)
keys = unzipped_items[0]
values = unzipped_items[1]
ds_clouds, shapes = get_downsampled_clouds(values)
ds_new = clouds.downsample(new_xyz, 0.01 * DS_SIZE)
#print 'ds_new_len shape', ds_new.shape
if parallel:
before = time.time()
#TODO: change back n_jobs=12 ?
costs = Parallel(n_jobs=8, verbose=0)(delayed(registration_cost)(ds_cloud, ds_new) for ds_cloud in ds_clouds)
after = time.time()
print "Parallel registration time in seconds =", after - before
else:
costs = []
for (i, ds_cloud) in enumerate(ds_clouds):
costs.append(registration_cost(ds_cloud, ds_new))
print(("completed %i/%i" % (i + 1, len(ds_clouds))))
#print(("costs\n", costs))
ibest = np.argmin(costs)
print "ibest = ", ibest
#pprint.pprint(zip(keys, costs, shapes))
#print keys
print "best key = ", keys[ibest]
print "best cost = ", costs[ibest]
return keys[ibest]
示例10: find_TADs
# 需要導入模塊: from joblib import Parallel [as 別名]
# 或者: from joblib.Parallel import append [as 別名]
def find_TADs(self, data, gammalist=range(10, 110, 10), segmentation='potts',
minlen=3, drop_gamma=False, n_jobs='auto'):
'''
Finds TADs in data with a list of gammas. Returns a pandas DataFrame
with columns 'Start', 'End' and 'Gamma'. Use genome_intervals_to_chr on
the returned object to get coordinates in bed-style format and not in
coordinates of concatenated genome.
If *drop_gamma*, drops the 'Gamma' column (useful when using 1 gamma)
'''
raise DeprecationWarning('Will be deprecated or rewritten to use'\
'lavaburst: github.com/nezar-compbio/lavaburst')
if n_jobs is 'auto': #Empirical values on my computer; with >8 Gb memory try increasing n_jobs
if segmentation == 'potts':
n_jobs = 3
elif segmentation == 'armatus':
n_jobs = 6
if ~np.isfinite(data).any():
print 'Non-finite values in data, substituting them with zeroes'
data[~np.isfinite(data)] = 0
Wcomm, Wnull, pass_mask, length = _precalculate_TADs_in_array(data)
f = _calculate_TADs
if n_jobs >= 1:
from joblib import Parallel, delayed
domains = Parallel(n_jobs=n_jobs, max_nbytes=1e6)(
delayed(f)(Wcomm, Wnull, pass_mask, length, g, segmentation)
for g in gammalist)
elif n_jobs is None or n_jobs == False or n_jobs == 0:
domains = []
for g in gammalist:
domains_g = f(Wcomm, Wnull, pass_mask, length, g, segmentation)
domains.append(domains_g)
domains = pd.concat(domains, ignore_index=True)
domains = domains.query('End-Start>='+str(minlen)).copy()
domains = domains.sort(columns=['Gamma', 'Start', 'End'])
domains.reset_index(drop=True, inplace=True)
domains[['Start', 'End']] = domains[['Start', 'End']].astype(int)
domains[['Start', 'End']] *= self.resolution
domains = domains[['Start', 'End', 'Score', 'Gamma']]
if drop_gamma:
domains.drop('Gamma', axis=1, inplace=True)
domains = self.genome_intervals_to_chr(domains).reset_index(drop=True)
return domains
示例11: main
# 需要導入模塊: from joblib import Parallel [as 別名]
# 或者: from joblib.Parallel import append [as 別名]
def main():
"""
Main function.
1. Setup logging
2. Get arguments
3. Get index
4. Process files
5. Write output
"""
setup_logging()
logger = logging.getLogger("stats." + __name__)
args = get_args()
index = get_index(args)
logger.warning("Positions not in annotation will be ignored.")
logger.info("Found " + str(len(args.inputs)) + " input file(s):")
for input_file in sorted(args.inputs):
logger.debug(input_file)
if args.is_parallel:
stats = Parallel(n_jobs=args.parallel,
verbose=100,
batch_size=1)(delayed(process_file)(input_file,
args.type,
index,
args.is_parallel)
for input_file in args.inputs)
else:
stats = []
for input_file in args.inputs:
output_table = process_file(input_file, args.type, index,
args.is_parallel)
stats.append(output_table)
write_stats(args.out, stats)
示例12: findPeaks
# 需要導入模塊: from joblib import Parallel [as 別名]
# 或者: from joblib.Parallel import append [as 別名]
def findPeaks(imgdict, maplist, params, maptype="ccmaxmap", pikfile=True):
peaktreelist = []
count = 0
thresh = float(params["thresh"])
bin = int(params["bin"])
diam = float(params["diam"])
apix = float(params["apix"])
olapmult = float(params["overlapmult"])
maxpeaks = int(params["maxpeaks"])
maxthresh = params["maxthresh"]
maxsizemult = float(params["maxsize"])
peaktype = params["peaktype"]
msg = not params['background']
pixdiam = diam/apix/float(bin)
pixrad = diam/apix/2.0/float(bin)
numpyVersion = float(numpy.version.version[:3])
if numpyVersion > 1.7:
peaktreelist = Parallel(n_jobs=params['nproc'])(delayed(runFindPeaks)(params,
maplist,maptype,pikfile,thresh,pixdiam,count,olapmult,maxpeaks,maxsizemult,
msg,bin,peaktype,pixrad,imgdict) for count in range(0,len(maplist)))
else:
## backup for AttributeError: 'memmap' object has no attribute 'offset', bug #3322
peaktreelist = []
for count in range(0,len(maplist)):
mappeaktree = runFindPeaks(params,maplist,maptype,pikfile,thresh,pixdiam,count,olapmult,
maxpeaks,maxsizemult,msg,bin,peaktype,pixrad,imgdict)
peaktreelist.append(mappeaktree)
peaktree = mergePeakTrees(imgdict, peaktreelist, params, msg, pikfile)
#max threshold
if maxthresh is not None:
precount = len(peaktree)
peaktree = maxThreshPeaks(peaktree, maxthresh)
postcount = len(peaktree)
#if precount != postcount:
apDisplay.printMsg("Filtered %d particles above threshold %.2f"%(precount-postcount,maxthresh))
return peaktree
示例13: pmultiquery
# 需要導入模塊: from joblib import Parallel [as 別名]
# 或者: from joblib.Parallel import append [as 別名]
#.........這裏部分代碼省略.........
num_cores = num_proc
# make sure quicksaves are right type
if quicksave is True:
raise ValueError("quicksave must be string when using pmultiquery.")
# the options that don't change
d = {
"option": option,
#'paralleling': True,
"function": "interrogator",
"root": root,
"note": note,
"denominator": denom,
}
# add kwargs to query
for k, v in kwargs.items():
d[k] = v
# make a list of dicts to pass to interrogator,
# with the iterable unique in every one
ds = []
if multiple_corpora:
path = sorted(path)
for index, p in enumerate(path):
name = os.path.basename(p)
a_dict = dict(d)
a_dict["path"] = p
a_dict["query"] = query
a_dict["outname"] = name
a_dict["just_speakers"] = just_speakers
a_dict["paralleling"] = index
a_dict["printstatus"] = False
ds.append(a_dict)
elif multiple_queries:
for index, (name, q) in enumerate(query.items()):
a_dict = dict(d)
a_dict["path"] = path
a_dict["query"] = q
a_dict["outname"] = name
a_dict["just_speakers"] = just_speakers
a_dict["paralleling"] = index
a_dict["printstatus"] = False
ds.append(a_dict)
elif multiple_option:
for index, (name, q) in enumerate(function_filter.items()):
a_dict = dict(d)
a_dict["path"] = path
a_dict["query"] = query
a_dict["outname"] = name
a_dict["just_speakers"] = just_speakers
a_dict["paralleling"] = index
a_dict["function_filter"] = q
a_dict["printstatus"] = False
ds.append(a_dict)
elif multiple_speakers:
for index, name in enumerate(just_speakers):
a_dict = dict(d)
a_dict["path"] = path
a_dict["query"] = query
a_dict["outname"] = name
a_dict["just_speakers"] = [name]
a_dict["function_filter"] = function_filter
a_dict["paralleling"] = index
a_dict["printstatus"] = False
ds.append(a_dict)
示例14: pmultiquery
# 需要導入模塊: from joblib import Parallel [as 別名]
# 或者: from joblib.Parallel import append [as 別名]
#.........這裏部分代碼省略.........
num_cores = 1
# make sure quicksaves are right type
if quicksave is True:
raise ValueError('quicksave must be string when using pmultiquery.')
# the options that don't change
d = {
#'paralleling': True,
'function': 'interrogator',
'root': root,
'note': note,
'denominator': denom}
# add kwargs to query
for k, v in list(kwargs.items()):
d[k] = v
# make a list of dicts to pass to interrogator,
# with the iterable unique in every one
ds = []
if multiple_corpora:
for index, p in enumerate(corpus):
name = p.name
a_dict = dict(d)
a_dict['corpus'] = p
a_dict['search'] = search
a_dict['query'] = query
a_dict['show'] = show
a_dict['outname'] = name.replace('-parsed', '')
a_dict['just_speakers'] = just_speakers
a_dict['paralleling'] = index
a_dict['printstatus'] = False
ds.append(a_dict)
elif multiple_queries:
for index, (name, q) in enumerate(query.items()):
a_dict = dict(d)
a_dict['corpus'] = corpus
a_dict['search'] = search
a_dict['query'] = q
a_dict['show'] = show
a_dict['outname'] = name
a_dict['just_speakers'] = just_speakers
a_dict['paralleling'] = index
a_dict['printstatus'] = False
ds.append(a_dict)
elif multiple_option:
for index, (name, q) in enumerate(function_filter.items()):
a_dict = dict(d)
a_dict['corpus'] = corpus
a_dict['search'] = search
a_dict['query'] = query
a_dict['show'] = show
a_dict['outname'] = name
a_dict['just_speakers'] = just_speakers
a_dict['paralleling'] = index
a_dict['function_filter'] = q
a_dict['printstatus'] = False
ds.append(a_dict)
elif multiple_speakers:
for index, name in enumerate(just_speakers):
a_dict = dict(d)
a_dict['corpus'] = corpus
a_dict['search'] = search
a_dict['query'] = query
a_dict['show'] = show
示例15: mab_eval
# 需要導入模塊: from joblib import Parallel [as 別名]
# 或者: from joblib.Parallel import append [as 別名]
def mab_eval(bandit, T, pol_cfg, N_trials=100, seed=None, parallel=False):
if seed is not None:
np.random.seed(seed)
all_policies = extract_policies(**pol_cfg)
policies = []
for p in all_policies:
if p.name in pol_cfg['names']:
policies.append(p)
names = [p.name for p in policies]
arm_dists = [bandit.resample_arms() for _ in range(N_trials)]
results = []
print 'Evaluating Policies {}'.format(names)
if parallel == 1:
rc = ipp.Client(profile='ssh')
dv = rc[:]
n_clients = len(dv)
with dv.sync_imports():
import mab
v = rc.load_balanced_view()
results = v.map(eval_helper, arm_dists, [bandit.arm_prior] * N_trials,
[T]*N_trials, [pol_cfg]*N_trials, [frozenset(names)] * N_trials,
[seed + inum for inum in range(N_trials)])
start = time.time()
while rc.outstanding:
try:
rc.wait(rc.outstanding, 1e-1)
except ipp.TimeoutError:
# ignore timeouterrors
pass
n_complete = N_trials - len(rc.outstanding)
if n_complete > 0:
est_remaining = ((time.time() - start) / n_complete) * len(rc.outstanding)
else:
est_remaining = 'No Estimate'
sys.stdout.write('\rFinished {} / {} jobs\tEstimated Time Remaining: {}'.format(n_complete, N_trials, est_remaining))
sys.stdout.flush()
elif parallel == 2:
from joblib import Parallel, delayed
results = Parallel(n_jobs=7, verbose=50)(delayed(_eval_helper)(
ad, bandit.arm_prior, T, pol_cfg, names, seed + inum) for
inum, ad in enumerate(arm_dists))
else:
for inum, ad in enumerate(arm_dists):
results.append(eval_helper(ad, bandit.arm_prior, T, pol_cfg, names, seed=seed+inum))
sys.stdout.write("{} / {}\t".format(inum, N_trials))
sys.stdout.flush()
means = []
variances = []
avg_err = []
discounted_mean = []
for j in range(len(policies)):
try:
regrets, choices, discounted = results[0].get()
except CompositeError, e:
print e
import IPython; IPython.embed()
regrets = regrets[j]
choices = choices[j]
discounted = discounted[j]
errors = np.array(choices != bandit.ibest, dtype=np.int)
for i in range(1, N_trials):
regrets_i, choices, discounted_i = results[i].get()
regrets = np.c_[regrets, regrets_i[j]]
errors += (choices[j] != bandit.ibest)
discounted += discounted_i[j]
discounted /= N_trials
discounted_mean.append(discounted)
means.append(np.mean(regrets, axis=1))
variances.append(np.var(regrets, axis=1))
avg_err.append(errors / N_trials)