當前位置: 首頁>>代碼示例>>Python>>正文


Python Parallel.reset_index方法代碼示例

本文整理匯總了Python中joblib.Parallel.reset_index方法的典型用法代碼示例。如果您正苦於以下問題:Python Parallel.reset_index方法的具體用法?Python Parallel.reset_index怎麽用?Python Parallel.reset_index使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在joblib.Parallel的用法示例。


在下文中一共展示了Parallel.reset_index方法的2個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: find_TADs

# 需要導入模塊: from joblib import Parallel [as 別名]
# 或者: from joblib.Parallel import reset_index [as 別名]
 def find_TADs(self, data, gammalist=range(10, 110, 10), segmentation='potts',
               minlen=3, drop_gamma=False, n_jobs='auto'):
     '''
     Finds TADs in data with a list of gammas. Returns a pandas DataFrame
     with columns 'Start', 'End' and 'Gamma'. Use genome_intervals_to_chr on
     the returned object to get coordinates in bed-style format and not in
     coordinates of concatenated genome.
     If *drop_gamma*, drops the 'Gamma' column (useful when using 1 gamma)
     '''
     raise DeprecationWarning('Will be deprecated or rewritten to use'\
                             'lavaburst: github.com/nezar-compbio/lavaburst')
     if n_jobs is 'auto': #Empirical values on my computer; with >8 Gb memory try increasing n_jobs
         if segmentation == 'potts':
             n_jobs = 3
         elif segmentation == 'armatus':
             n_jobs = 6
     if ~np.isfinite(data).any():
         print 'Non-finite values in data, substituting them with zeroes'
         data[~np.isfinite(data)] = 0
     Wcomm, Wnull, pass_mask, length = _precalculate_TADs_in_array(data)
     f = _calculate_TADs
     if n_jobs >= 1:
         from joblib import Parallel, delayed
         domains = Parallel(n_jobs=n_jobs, max_nbytes=1e6)(
                           delayed(f)(Wcomm, Wnull, pass_mask, length, g, segmentation)
                                                                    for g in gammalist)
     elif n_jobs is None or n_jobs == False or n_jobs == 0:
         domains = []
         for g in gammalist:
             domains_g = f(Wcomm, Wnull, pass_mask, length, g, segmentation)
             domains.append(domains_g)
     domains = pd.concat(domains, ignore_index=True)
     domains = domains.query('End-Start>='+str(minlen)).copy()
     domains = domains.sort(columns=['Gamma', 'Start', 'End'])
     domains.reset_index(drop=True, inplace=True)
     domains[['Start', 'End']] = domains[['Start', 'End']].astype(int)
     domains[['Start', 'End']] *= self.resolution
     domains = domains[['Start', 'End', 'Score', 'Gamma']]
     if drop_gamma:
         domains.drop('Gamma', axis=1, inplace=True)
     domains = self.genome_intervals_to_chr(domains).reset_index(drop=True)
     return domains
開發者ID:Phlya,項目名稱:hicplotlib,代碼行數:44,代碼來源:GenomicIntervals.py

示例2: retrieve_proposals

# 需要導入模塊: from joblib import Parallel [as 別名]
# 或者: from joblib.Parallel import reset_index [as 別名]
def retrieve_proposals(video_info, model, feature_filename,
                       feat_size=16, stride_intersection=0.1):
    """Retrieve proposals for a given video.
    
    Parameters
    ----------
    video_info : DataFrame
        DataFrame containing the 'video-name' and 'video-frames'.
    model : dict
        Dictionary containing the learned model.
        Keys: 
            'D': 2darray containing the sparse dictionary.
            'cost': Cost function at the last iteration.
            'durations': 1darray containing typical durations (n-frames)
                 in the training set.
            'type': Dictionary type.
    feature_filename : str
        String containing the path to the HDF5 file containing 
        the features for each video. The HDF5 file must contain 
        a group for each video where the id of the group is the name 
        of the video; and each group must contain a dataset containing
        the features.
    feat_size : int, optional
        Size of the temporal extension of the features.
    stride_intersection : float, optional
         Percentage of intersection between temporal windows.
    """
    feat_obj = FeatHelper(feature_filename, t_stride=1)
    candidate_df = generate_candidate_proposals(video_info, model['durations'],
                                                feat_size, stride_intersection)
    D = model['D']
    params = model['params']
    feat_obj.open_instance()
    feat_stack = feat_obj.read_feat(video_info['video-name'])
    feat_obj.close_instance()
    n_feats = feat_stack.shape[0]
    candidate_df = candidate_df[
        (candidate_df['f-init'] + candidate_df['n-frames']) <= n_feats]
    candidate_df = candidate_df.reset_index(drop=True)
    proposal_df = Parallel(n_jobs=-1)(delayed(wrapper_score_proposals)(this_df,
                                                                      D, 
                                                                     feat_stack,
                                                                       params,
                                                                     feat_size)
                                      for k, this_df in candidate_df.iterrows())
    proposal_df = pd.concat(proposal_df, axis=1).T
    proposal_df['score'] = (
        proposal_df['score'] - proposal_df['score'].min()) / (
            proposal_df['score'].max() - proposal_df['score'].min())
    proposal_df['score'] = np.abs(proposal_df['score'] - 1.0)
    proposal_df = proposal_df.loc[proposal_df['score'].argsort()[::-1]]
    proposal_df = proposal_df.rename(columns={'n-frames': 'f-end'})
    proposal_df['f-end'] = proposal_df['f-init'] + proposal_df['f-end'] - 1
    return proposal_df.reset_index(drop=True)
開發者ID:cabaf,項目名稱:sparseprop,代碼行數:56,代碼來源:retrieve.py


注:本文中的joblib.Parallel.reset_index方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。