本文整理匯總了Python中classy.Class.struct_cleanup方法的典型用法代碼示例。如果您正苦於以下問題:Python Class.struct_cleanup方法的具體用法?Python Class.struct_cleanup怎麽用?Python Class.struct_cleanup使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類classy.Class
的用法示例。
在下文中一共展示了Class.struct_cleanup方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_class_setup
# 需要導入模塊: from classy import Class [as 別名]
# 或者: from classy.Class import struct_cleanup [as 別名]
def test_class_setup():
cosmology = astropy.cosmology.Planck13
assert cosmology.Om0 == cosmology.Odm0 + cosmology.Ob0
assert 1 == (cosmology.Om0 + cosmology.Ode0 + cosmology.Ok0 +
cosmology.Ogamma0 + cosmology.Onu0)
class_parameters = get_class_parameters(cosmology)
try:
from classy import Class
cosmo = Class()
cosmo.set(class_parameters)
cosmo.compute()
assert cosmo.h() == cosmology.h
assert cosmo.T_cmb() == cosmology.Tcmb0.value
assert cosmo.Omega_b() == cosmology.Ob0
# Calculate Omega(CDM)_0 two ways:
assert abs((cosmo.Omega_m() - cosmo.Omega_b()) -
(cosmology.Odm0 - cosmology.Onu0)) < 1e-8
assert abs(cosmo.Omega_m() - (cosmology.Om0 - cosmology.Onu0)) < 1e-8
# CLASS calculates Omega_Lambda itself so this is a non-trivial test.
calculated_Ode0 = cosmo.get_current_derived_parameters(
['Omega_Lambda'])['Omega_Lambda']
assert abs(calculated_Ode0 - (cosmology.Ode0 + cosmology.Onu0)) < 1e-5
cosmo.struct_cleanup()
cosmo.empty()
except ImportError:
pass
示例2: m_Pk
# 需要導入模塊: from classy import Class [as 別名]
# 或者: from classy.Class import struct_cleanup [as 別名]
def m_Pk(k=np.logspace(-3, 0., 100), z=0.53, nl_model='trg'):
print k
cosmo = Class()
CLASS_INPUT = {}
CLASS_INPUT['Mnu'] = ([{'N_eff': 0.0, 'N_ncdm': 1, 'm_ncdm': 0.06, 'deg_ncdm': 3.0}], 'normal')
CLASS_INPUT['Output_spectra'] = ([{'output': 'mPk', 'P_k_max_1/Mpc': 1, 'z_pk': z}], 'power')
CLASS_INPUT['Nonlinear'] = ([{'non linear': nl_model}], 'power')
verbose = {}
# 'input_verbose': 1,
# 'background_verbose': 1,
# 'thermodynamics_verbose': 1,
# 'perturbations_verbose': 1,
# 'transfer_verbose': 1,
# 'primordial_verbose': 1,
# 'spectra_verbose': 1,
# 'nonlinear_verbose': 1,
# 'lensing_verbose': 1,
# 'output_verbose': 1
# }
cosmo.struct_cleanup()
cosmo.empty()
INPUTPOWER = []
INPUTNORMAL = [{}]
for key, value in CLASS_INPUT.iteritems():
models, state = value
if state == 'power':
INPUTPOWER.append([{}]+models)
else:
INPUTNORMAL.extend(models)
PRODPOWER = list(itertools.product(*INPUTPOWER))
DICTARRAY = []
for normelem in INPUTNORMAL:
for powelem in PRODPOWER: # itertools.product(*modpower):
temp_dict = normelem.copy()
for elem in powelem:
temp_dict.update(elem)
DICTARRAY.append(temp_dict)
scenario = {}
for dic in DICTARRAY:
scenario.update(dic)
setting = cosmo.set(dict(verbose.items()+scenario.items()))
cosmo.compute()
pk_out = []
for k_i in k:
pk_out.append(cosmo.pk(k_i,z))
return pk_out
示例3: ClassCoreModule
# 需要導入模塊: from classy import Class [as 別名]
# 或者: from classy.Class import struct_cleanup [as 別名]
class ClassCoreModule(object):
def __init__(self, mapping=DEFAULT_PARAM_MAPPING, constants=CLASS_DEFAULT_PARAMS):
"""
Core Module for the delegation of the computation of the cmb power
spectrum to the Class wrapper classy.
The defaults are for the 6 LambdaCDM cosmological parameters.
:param mapping: (optional) dict mapping name of the parameter to the index
:param constants: (optional) dict with constants overwriting CLASS defaults
"""
self.mapping = mapping
if constants is None:
constants = {}
self.constants = constants
def __call__(self, ctx):
p1 = ctx.getParams()
params = self.constants.copy()
for k,v in self.mapping.items():
params[k] = p1[v]
self.cosmo.set(params)
self.cosmo.compute()
if self.constants['lensing'] == 'yes':
cls = self.cosmo.lensed_cl()
else:
cls = self.cosmo.raw_cl()
Tcmb = self.cosmo.T_cmb()*1e6
frac = Tcmb**2 * cls['ell'][2:] * (cls['ell'][2:] + 1) / 2. / pi
ctx.add(CL_TT_KEY, frac*cls['tt'][2:])
ctx.add(CL_TE_KEY, frac*cls['te'][2:])
ctx.add(CL_EE_KEY, frac*cls['ee'][2:])
ctx.add(CL_BB_KEY, frac*cls['bb'][2:])
self.cosmo.struct_cleanup()
def setup(self):
"""
Create an instance of Class and attach it to self.
"""
self.cosmo = Class()
self.cosmo.set(self.constants)
self.cosmo.compute()
self.cosmo.struct_cleanup()
示例4: classy
# 需要導入模塊: from classy import Class [as 別名]
# 或者: from classy.Class import struct_cleanup [as 別名]
class classy(SlikPlugin):
"""
Plugin for CLASS.
Credit: Brent Follin, Teresa Hamill, Andy Scacco
"""
def __init__(self):
super(classy,self).__init__()
try:
from classy import Class
except ImportError:
raise Exception("Failed to import CLASS python wrapper 'Classy'.")
self.model = Class()
def __call__(self,
**kwargs):
self.model.set(**kwargs)
self.model.compute()
ell = arange(l_max_scalar+1)
self.cmb_result = {'cl_%s'%x:(self.model.lensed_cl(l_max_scalar)[x.lower()])*Tcmb**2*1e12*ell*(ell+1)/2/pi
for x in ['TT','TE','EE','BB','PP','TP']}
self.model.struct_cleanup()
self.model.empty()
return self.cmb_result
def get_bao_observables(self, z):
return {'H':self.model.Hubble(z),
'D_A':self.model.angular_distance(z),
'c':1.0,
'r_d':(self.model.get_current_derived_parameters(['rs_rec']))['rs_rec']}
示例5: calculate_power
# 需要導入模塊: from classy import Class [as 別名]
# 或者: from classy.Class import struct_cleanup [as 別名]
def calculate_power(cosmology, k_min, k_max, z=0, num_k=500, scaled_by_h=True,
n_s=0.9619, logA=3.0980):
"""
Calculate the power spectrum P(k,z) over the range k_min <= k <= k_max.
"""
try:
from classy import Class
cosmo = Class()
except ImportError:
raise RuntimeError('power.calculate_power requires classy.')
class_parameters = get_class_parameters(cosmology)
class_parameters['output'] = 'mPk'
if scaled_by_h:
class_parameters['P_k_max_h/Mpc'] = k_max
else:
class_parameters['P_k_max_1/Mpc'] = k_max
class_parameters['n_s'] = n_s
class_parameters['ln10^{10}A_s'] = logA
cosmo.set(class_parameters)
cosmo.compute()
if scaled_by_h:
k_scale = cosmo.h()
Pk_scale = cosmo.h()**3
else:
k_scale = 1.
Pk_scale = 1.
result = np.empty((num_k,), dtype=[('k', float), ('Pk', float)])
result['k'][:] = np.logspace(np.log10(k_min), np.log10(k_max), num_k)
for i, k in enumerate(result['k']):
result['Pk'][i] = cosmo.pk(k * k_scale, z) * Pk_scale
cosmo.struct_cleanup()
cosmo.empty()
return result
示例6: TestClass
# 需要導入模塊: from classy import Class [as 別名]
# 或者: from classy.Class import struct_cleanup [as 別名]
class TestClass(unittest.TestCase):
"""
Testing Class and its wrapper classy on different cosmologies
To run it, do
~] nosetest test_class.py
It will run many times Class, on different cosmological scenarios, and
everytime testing for different output possibilities (none asked, only mPk,
etc..)
"""
def setUp(self):
"""
set up data used in the tests.
setUp is called before each test function execution.
"""
self.cosmo = Class()
self.verbose = {
"input_verbose": 1,
"background_verbose": 1,
"thermodynamics_verbose": 1,
"perturbations_verbose": 1,
"transfer_verbose": 1,
"primordial_verbose": 1,
"spectra_verbose": 1,
"nonlinear_verbose": 1,
"lensing_verbose": 1,
"output_verbose": 1,
}
self.scenario = {"lensing": "yes"}
def tearDown(self):
self.cosmo.struct_cleanup()
self.cosmo.empty()
del self.scenario
@parameterized.expand(
itertools.product(
("LCDM", "Mnu", "Positive_Omega_k", "Negative_Omega_k", "Isocurvature_modes"),
(
{"output": ""},
{"output": "mPk"},
{"output": "tCl"},
{"output": "tCl pCl lCl"},
{"output": "mPk tCl lCl", "P_k_max_h/Mpc": 10},
{"output": "nCl sCl"},
{"output": "tCl pCl lCl nCl sCl"},
),
({"gauge": "newtonian"}, {"gauge": "sync"}),
({}, {"non linear": "halofit"}),
)
)
def test_wrapper_implementation(self, name, scenario, gauge, nonlinear):
"""Create a few instances based on different cosmologies"""
if name == "Mnu":
self.scenario.update({"N_ncdm": 1, "m_ncdm": 0.06})
elif name == "Positive_Omega_k":
self.scenario.update({"Omega_k": 0.01})
elif name == "Negative_Omega_k":
self.scenario.update({"Omega_k": -0.01})
elif name == "Isocurvature_modes":
self.scenario.update({"ic": "ad,nid,cdi", "c_ad_cdi": -0.5})
self.scenario.update(scenario)
if scenario != {}:
self.scenario.update(gauge)
self.scenario.update(nonlinear)
sys.stderr.write("\n\n---------------------------------\n")
sys.stderr.write("| Test case %s |\n" % name)
sys.stderr.write("---------------------------------\n")
for key, value in self.scenario.iteritems():
sys.stderr.write("%s = %s\n" % (key, value))
sys.stderr.write("\n")
setting = self.cosmo.set(dict(self.verbose.items() + self.scenario.items()))
self.assertTrue(setting, "Class failed to initialize with input dict")
cl_list = ["tCl", "lCl", "pCl", "nCl", "sCl"]
# Depending on the cases, the compute should fail or not
should_fail = True
output = self.scenario["output"].split()
for elem in output:
if elem in ["tCl", "pCl"]:
for elem2 in output:
if elem2 == "lCl":
should_fail = False
break
if not should_fail:
self.cosmo.compute()
else:
self.assertRaises(CosmoSevereError, self.cosmo.compute)
return
self.assertTrue(self.cosmo.state, "Class failed to go through all __init__ methods")
#.........這裏部分代碼省略.........
示例7: P
# 需要導入模塊: from classy import Class [as 別名]
# 或者: from classy.Class import struct_cleanup [as 別名]
kk = np.logspace(-4,np.log10(3),1000) # k in h/Mpc
Pk = [] # P(k) in (Mpc/h)**3
h = LambdaCDM.h() # get reduced Hubble for conversions to 1/Mpc
for k in kk:
Pk.append(LambdaCDM.pk(k*h,0.)*h**3) # function .pk(k,z)
# In[ ]:
# plot P(k)
plt.figure(2)
plt.xscale('log');plt.yscale('log');plt.xlim(kk[0],kk[-1])
plt.xlabel(r'$k \,\,\,\, [h/\mathrm{Mpc}]$')
plt.ylabel(r'$P(k) \,\,\,\, [\mathrm{Mpc}/h]^3$')
plt.plot(kk,Pk,'b-')
# In[ ]:
plt.savefig('warmup_pk.pdf')
# In[ ]:
# optional: clear content of LambdaCDM (to reuse it for another model)
LambdaCDM.struct_cleanup()
# optional: reset parameters to default
LambdaCDM.empty()
# In[ ]:
示例8: Helium
# 需要導入模塊: from classy import Class [as 別名]
# 或者: from classy.Class import struct_cleanup [as 別名]
'n_s':0.9619,
'tau_reio':0.0925,
# Take fixed value for primordial Helium (instead of automatic BBN adjustment)
'YHe':0.246,
# other output and precision parameters
'l_max_scalars':5000}
###############
#
# call CLASS
#
M = Class()
M.set(common_settings)
M.compute()
cl_tot = M.raw_cl(3000)
cl_lensed = M.lensed_cl(3000)
M.struct_cleanup() # clean output
M.empty() # clean input
#
M.set(common_settings) # new input
M.set({'temperature contributions':'tsw'})
M.compute()
cl_tsw = M.raw_cl(3000)
M.struct_cleanup()
M.empty()
#
M.set(common_settings)
M.set({'temperature contributions':'eisw'})
M.compute()
cl_eisw = M.raw_cl(3000)
M.struct_cleanup()
M.empty()
示例9: TestClass
# 需要導入模塊: from classy import Class [as 別名]
# 或者: from classy.Class import struct_cleanup [as 別名]
class TestClass(unittest.TestCase):
"""
Testing Class and its wrapper classy on different cosmologies
To run it, do
~] nosetest test_class.py
It will run many times Class, on different cosmological scenarios, and
everytime testing for different output possibilities (none asked, only mPk,
etc..)
"""
def setUp(self):
"""
set up data used in the tests.
setUp is called before each test function execution.
"""
self.cosmo = Class()
self.verbose = {
'background_verbose': 1,
'thermodynamics_verbose': 1,
'perturbations_verbose': 1,
'transfer_verbose': 1,
'primordial_verbose': 1,
'spectra_verbose': 1,
'nonlinear_verbose': 1,
'lensing_verbose': 1,
'output_verbose': 1}
self.scenario = {'lensing':'yes'}
def tearDown(self):
self.cosmo.struct_cleanup()
self.cosmo.empty()
del self.scenario
@parameterized.expand(
itertools.product(
('LCDM',
'Mnu',
'Positive_Omega_k',
'Negative_Omega_k',
'Isocurvature_modes', ),
({'output': ''}, {'output': 'mPk'}, {'output': 'tCl'},
{'output': 'tCl pCl lCl'}, {'output': 'mPk tCl lCl', 'P_k_max_h/Mpc':10},
{'output': 'nCl sCl'}, {'output': 'tCl pCl lCl nCl sCl'}),
({'gauge': 'newtonian'}, {'gauge': 'sync'}),
({}, {'non linear': 'halofit'})))
def test_parameters(self, name, scenario, gauge, nonlinear):
"""Create a few instances based on different cosmologies"""
if name == 'Mnu':
self.scenario.update({'N_ncdm': 1, 'm_ncdm': 0.06})
elif name == 'Positive_Omega_k':
self.scenario.update({'Omega_k': 0.01})
elif name == 'Negative_Omega_k':
self.scenario.update({'Omega_k': -0.01})
elif name == 'Isocurvature_modes':
self.scenario.update({'ic': 'ad,nid,cdi', 'c_ad_cdi': -0.5})
self.scenario.update(scenario)
if scenario != {}:
self.scenario.update(gauge)
self.scenario.update(nonlinear)
sys.stderr.write('\n\n---------------------------------\n')
sys.stderr.write('| Test case %s |\n' % name)
sys.stderr.write('---------------------------------\n')
for key, value in self.scenario.iteritems():
sys.stderr.write("%s = %s\n" % (key, value))
sys.stderr.write("\n")
setting = self.cosmo.set(
dict(self.verbose.items()+self.scenario.items()))
self.assertTrue(setting, "Class failed to initialize with input dict")
cl_list = ['tCl', 'lCl', 'pCl', 'nCl', 'sCl']
# Depending on the cases, the compute should fail or not
should_fail = True
output = self.scenario['output'].split()
for elem in output:
if elem in ['tCl', 'pCl']:
for elem2 in output:
if elem2 == 'lCl':
should_fail = False
break
if not should_fail:
self.cosmo.compute()
else:
self.assertRaises(CosmoSevereError, self.cosmo.compute)
return
self.assertTrue(
self.cosmo.state,
"Class failed to go through all __init__ methods")
if self.cosmo.state:
print '--> Class is ready'
# Depending
#.........這裏部分代碼省略.........
示例10: classy
# 需要導入模塊: from classy import Class [as 別名]
# 或者: from classy.Class import struct_cleanup [as 別名]
class classy(SlikPlugin):
"""
Plugin for CLASS.
Credit: Brent Follin, Teresa Hamill
"""
#{cosmoslik name : class name}
name_mapping = {'As':'A_s',
'ns':'n_s',
'r':'r',
'nt':'n_t',
'ombh2':'omega_b',
'omch2':'omega_cdm',
'omnuh2':'omega_ncdm',
'tau':'tau_reio',
'H0':'H0',
'massive_neutrinos':'N_ncdm',
'massless_neutrinos':'N_ur',
'Yp':'YHe',
'pivot_scalar':'k_pivot'}
def __init__(self):
super(classy,self).__init__()
try:
from classy import Class
except ImportError:
raise Exception("Failed to import CLASS python wrapper 'Classy'.")
self.model = Class()
def __call__(self,
ombh2,
omch2,
H0,
As,
ns,
tau,
omnuh2, #0.006
w=None,
r=None,
nrun=None,
omk=0,
Yp=None,
Tcmb=2.7255,
massive_neutrinos=1,
massless_neutrinos=2.046,
l_max_scalar=3000,
l_max_tensor=3000,
pivot_scalar=0.002,
outputs=[],
**kwargs):
self.model.set(output='tCl, lCl, pCl',
lensing='yes',
l_max_scalars=l_max_scalar,
**{self.name_mapping[k]:v for k,v in locals().items()
if k in self.name_mapping and v is not None})
self.model.compute()
ell = arange(l_max_scalar+1)
self.cmb_result = {'cl_%s'%x:(self.model.lensed_cl(l_max_scalar)[x.lower()])*Tcmb**2*1e12*ell*(ell+1)/2/pi
for x in ['TT','TE','EE','BB','PP','TP']}
self.model.struct_cleanup()
self.model.empty()
return self.cmb_result
def get_bao_observables(self, z):
return {'H':self.model.Hubble(z),
'D_A':self.model.angular_distance(z),
'c':1.0,
'r_d':(self.model.get_current_derived_parameters(['rs_rec']))['rs_rec']}
示例11: Class
# 需要導入模塊: from classy import Class [as 別名]
# 或者: from classy.Class import struct_cleanup [as 別名]
'custom2': 0,
'custom3': 0,
'custom4': 0,
'custom5': 0}
#Get the unperturbed cls for comparison
cosmo = Class()
cosmo.set(params)
cosmo.compute()
clso=cosmo.lensed_cl(2508)['tt'][30:]
ell = cosmo.lensed_cl(2508)['ell'][30:]
for i in range(len(clso)):
clso[i]=ell[i]*(ell[i]+1)/(4*np.pi)*((2.726e6)**2)*clso[i]
a=np.zeros(5)
cosmo.struct_cleanup()
cosmo.empty()
dcls=np.zeros([clso.shape[0],5])
h=1e-6
for m in range(5):
a[m]=h
# Define your cosmology (what is not specified will be set to CLASS default parameters)
params = {
'output': 'tCl lCl',
'l_max_scalars': 2508,
'lensing': 'yes',
'P_k_ini type': 'external_Pk',
'command': 'python /home/andrew/Research/tools/class_public-2.4.3/external_Pk/generate_Pk_cosines.py',
'custom1': a[0],
'custom2': a[1],
'custom3': a[2],
示例12: TestClass
# 需要導入模塊: from classy import Class [as 別名]
# 或者: from classy.Class import struct_cleanup [as 別名]
class TestClass(unittest.TestCase):
"""
Testing Class and its wrapper classy on different cosmologies
To run it, do
~] nosetest test_class.py
It will run many times Class, on different cosmological scenarios, and
everytime testing for different output possibilities (none asked, only mPk,
etc..)
"""
@classmethod
def setUpClass(self):
self.faulty_figs_path = os.path.join(
os.path.sep.join(os.path.realpath(__file__).split(os.path.sep)[:-1]), "faulty_figs"
)
if os.path.isdir(self.faulty_figs_path):
shutil.rmtree(self.faulty_figs_path)
os.mkdir(self.faulty_figs_path)
@classmethod
def tearDownClass(self):
pass
def setUp(self):
"""
set up data used in the tests.
setUp is called before each test function execution.
"""
self.cosmo = Class()
self.cosmo_newt = Class()
self.verbose = {
"input_verbose": 1,
"background_verbose": 1,
"thermodynamics_verbose": 1,
"perturbations_verbose": 1,
"transfer_verbose": 1,
"primordial_verbose": 1,
"spectra_verbose": 1,
"nonlinear_verbose": 1,
"lensing_verbose": 1,
"output_verbose": 1,
}
self.scenario = {}
def tearDown(self):
self.cosmo.struct_cleanup()
self.cosmo.empty()
self.cosmo_newt.struct_cleanup()
self.cosmo_newt.empty()
del self.scenario
def poormansname(self, somedict):
string = "_".join([k + "=" + str(v) for k, v in somedict.iteritems()])
string = string.replace("/", "%")
string = string.replace(",", "")
string = string.replace(" ", "")
return string
@parameterized.expand(TUPLE_ARRAY)
def test_0wrapper_implementation(self, inputdict):
"""Create a few instances based on different cosmologies"""
self.scenario.update(inputdict)
self.name = self.poormansname(inputdict)
sys.stderr.write("\n\n---------------------------------\n")
sys.stderr.write("| Test case %s |\n" % self.name)
sys.stderr.write("---------------------------------\n")
for key, value in self.scenario.iteritems():
sys.stderr.write("%s = %s\n" % (key, value))
sys.stdout.write("%s = %s\n" % (key, value))
sys.stderr.write("\n")
setting = self.cosmo.set(dict(self.verbose.items() + self.scenario.items()))
self.assertTrue(setting, "Class failed to initialize with input dict")
cl_dict = {"tCl": ["tt"], "lCl": ["pp"], "pCl": ["ee", "bb"]}
density_cl_list = ["nCl", "sCl"]
# 'lensing' is always set to yes. Therefore, trying to compute 'tCl' or
# 'pCl' will fail except if we also ask for 'lCl'. The flag
# 'should_fail' stores this status.
sys.stderr.write("Should")
should_fail = self.test_incompatible_input()
if should_fail:
sys.stderr.write(" fail...\n")
else:
sys.stderr.write(" not fail...\n")
if not should_fail:
self.cosmo.compute()
else:
self.assertRaises(CosmoSevereError, self.cosmo.compute)
return
#.........這裏部分代碼省略.........
示例13: classy
# 需要導入模塊: from classy import Class [as 別名]
# 或者: from classy.Class import struct_cleanup [as 別名]
class classy(SlikPlugin):
"""
Plugin for CLASS.
Credit: Brent Follin, Teresa Hamill, Andy Scacco
"""
#{cosmoslik name : class name} - This needs to be done even for variables with the same name (because of for loop in self.model.set)!
name_mapping = {'As':'A_s',
'ns':'n_s',
'r':'r',
'k_c':'k_c',
'alpha_exp':'alpha_exp',
'nt':'n_t',
'ombh2':'omega_b',
'omch2':'omega_cdm',
'omnuh2':'omega_ncdm',
'tau':'tau_reio',
'H0':'H0',
'massive_neutrinos':'N_ncdm',
'massless_neutrinos':'N_ur',
'Yp':'YHe',
'pivot_scalar':'k_pivot',
#'Tcmb':'T_cmb',
#'P_k_max_hinvMpc':'P_k_max_h/Mpc'
#'w':'w0_fld',
#'nrun':'alpha_s',
#'omk':'Omega_k',
#'l_max_scalar':'l_max_scalars',
#'l_max_tensor':'l_max_tensors'
}
def __init__(self):
super(classy,self).__init__()
try:
from classy import Class
except ImportError:
raise Exception("Failed to import CLASS python wrapper 'Classy'.")
self.model = Class()
def __call__(self,
ombh2,
omch2,
H0,
As,
ns,
k_c,
alpha_exp,
tau,
#omnuh2=0, #0.006 #None means that Class will take the default for this, maybe?
w=None,
r=None,
nrun=None,
omk=0,
Yp=None,
Tcmb=2.7255,
#massive_neutrinos=0,
massless_neutrinos=3.046,
l_max_scalar=3000,
l_max_tensor=3000,
pivot_scalar=0.05,
outputs=[],
**kwargs):
self.model.set(output='tCl, lCl, pCl',
lensing='yes',
l_max_scalars=l_max_scalar,
**{self.name_mapping[k]:v for k,v in locals().items()
if k in self.name_mapping and v is not None})
self.model.compute()
ell = arange(l_max_scalar+1)
self.cmb_result = {'cl_%s'%x:(self.model.lensed_cl(l_max_scalar)[x.lower()])*Tcmb**2*1e12*ell*(ell+1)/2/pi
for x in ['TT','TE','EE','BB','PP','TP']}
self.model.struct_cleanup()
self.model.empty()
return self.cmb_result
def get_bao_observables(self, z):
return {'H':self.model.Hubble(z),
'D_A':self.model.angular_distance(z),
'c':1.0,
'r_d':(self.model.get_current_derived_parameters(['rs_rec']))['rs_rec']}
示例14: Class
# 需要導入模塊: from classy import Class [as 別名]
# 或者: from classy.Class import struct_cleanup [as 別名]
NH = Class()
NH.set(commonsettings)
NH.set({'m_ncdm':str(m1)+','+str(m2)+','+str(m3)})
NH.compute()
# inverted hierarchy
[m1, m2, m3] = get_masses(2.45e-3,7.50e-5, sum_masses, 'IH')
IH = Class()
IH.set(commonsettings)
IH.set({'m_ncdm':str(m1)+','+str(m2)+','+str(m3)})
IH.compute()
pkNH = []
pkIH = []
for k in kvec:
pkNH.append(NH.pk(k,0.))
pkIH.append(IH.pk(k,0.))
NH.struct_cleanup()
IH.struct_cleanup()
# extract h value to convert k from 1/Mpc to h/Mpc
h = NH.h()
plt.semilogx(kvec/h,1-np.array(pkNH)/np.array(pkIH))
legarray.append(r'$\Sigma m_i = '+str(sum_masses)+'$eV')
plt.axhline(0,color='k')
plt.xlim(kvec[0]/h,kvec[-1]/h)
plt.xlabel(r'$k [h \mathrm{Mpc}^{-1}]$')
plt.ylabel(r'$1-P(k)^\mathrm{NH}/P(k)^\mathrm{IH}$')
plt.legend(legarray)
# In[6]:
示例15: classy
# 需要導入模塊: from classy import Class [as 別名]
# 或者: from classy.Class import struct_cleanup [as 別名]
class classy(SlikPlugin):
"""
Plugin for CLASS.
Credit: Brent Follin, Teresa Hamill, Andy Scacco
"""
#{cosmoslik name : class name} - This needs to be done even for variables with the same name (because of for loop in self.model.set)!
name_mapping = {'As':'A_s',
'ns':'n_s',
'r':'r',
'phi0':'custom1',
'm6':'custom2',
'nt':'n_t',
'ombh2':'omega_b',
'omch2':'omega_cdm',
'omnuh2':'omega_ncdm',
'tau':'tau_reio',
'H0':'H0',
'massive_neutrinos':'N_ncdm',
'massless_neutrinos':'N_ur',
'Yp':'YHe',
'pivot_scalar':'k_pivot',
}
def __init__(self):
super(classy,self).__init__()
try:
from classy import Class
except ImportError:
raise Exception("Failed to import CLASS python wrapper 'Classy'.")
self.model = Class()
def __call__(self,
ombh2,
omch2,
H0,
As,
ns,
phi0,
m6,
tau,
w=None,
r=None,
nrun=None,
omk=0,
Yp=None,
Tcmb=2.7255,
massless_neutrinos=3.046,
l_max_scalar=3000,
l_max_tensor=3000,
pivot_scalar=0.05,
outputs=[],
**kwargs):
d={self.name_mapping[k]:v for k,v in locals().items()
if k in self.name_mapping and v is not None}
d['P_k_ini type']='external_Pk'
d['modes'] = 's,t'
self.model.set(output='tCl, lCl, pCl',
lensing='yes',
l_max_scalars=l_max_scalar,
command = '../LSODAtesnors/pk',
**d)
self.model.compute()
ell = arange(l_max_scalar+1)
self.cmb_result = {'cl_%s'%x:(self.model.lensed_cl(l_max_scalar)[x.lower()])*Tcmb**2*1e12*ell*(ell+1)/2/pi
for x in ['TT','TE','EE','BB','PP','TP']}
self.model.struct_cleanup()
self.model.empty()
return self.cmb_result
def get_bao_observables(self, z):
return {'H':self.model.Hubble(z),
'D_A':self.model.angular_distance(z),
'c':1.0,
'r_d':(self.model.get_current_derived_parameters(['rs_rec']))['rs_rec']}