當前位置: 首頁>>代碼示例>>Python>>正文


Python Class.get_current_derived_parameters方法代碼示例

本文整理匯總了Python中classy.Class.get_current_derived_parameters方法的典型用法代碼示例。如果您正苦於以下問題:Python Class.get_current_derived_parameters方法的具體用法?Python Class.get_current_derived_parameters怎麽用?Python Class.get_current_derived_parameters使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在classy.Class的用法示例。


在下文中一共展示了Class.get_current_derived_parameters方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_class_setup

# 需要導入模塊: from classy import Class [as 別名]
# 或者: from classy.Class import get_current_derived_parameters [as 別名]
def test_class_setup():
    cosmology = astropy.cosmology.Planck13
    assert cosmology.Om0 == cosmology.Odm0 + cosmology.Ob0
    assert 1 == (cosmology.Om0 + cosmology.Ode0 + cosmology.Ok0 +
                 cosmology.Ogamma0 + cosmology.Onu0)
    class_parameters = get_class_parameters(cosmology)
    try:
        from classy import Class
        cosmo = Class()
        cosmo.set(class_parameters)
        cosmo.compute()
        assert cosmo.h() == cosmology.h
        assert cosmo.T_cmb() == cosmology.Tcmb0.value
        assert cosmo.Omega_b() == cosmology.Ob0
        # Calculate Omega(CDM)_0 two ways:
        assert abs((cosmo.Omega_m() - cosmo.Omega_b()) -
                   (cosmology.Odm0 - cosmology.Onu0)) < 1e-8
        assert abs(cosmo.Omega_m() - (cosmology.Om0 - cosmology.Onu0)) < 1e-8
        # CLASS calculates Omega_Lambda itself so this is a non-trivial test.
        calculated_Ode0 = cosmo.get_current_derived_parameters(
            ['Omega_Lambda'])['Omega_Lambda']
        assert abs(calculated_Ode0 - (cosmology.Ode0 + cosmology.Onu0)) < 1e-5
        cosmo.struct_cleanup()
        cosmo.empty()
    except ImportError:
        pass
開發者ID:slosar,項目名稱:randomfield,代碼行數:28,代碼來源:test_cosmotools.py

示例2: classy

# 需要導入模塊: from classy import Class [as 別名]
# 或者: from classy.Class import get_current_derived_parameters [as 別名]
class classy(SlikPlugin):
    """
    Plugin for CLASS.
    Credit: Brent Follin, Teresa Hamill, Andy Scacco
    """
    
    def __init__(self):
        super(classy,self).__init__()

        try:
            from classy import Class
        except ImportError:
            raise Exception("Failed to import CLASS python wrapper 'Classy'.")

        self.model = Class()


    def __call__(self,
        **kwargs):


        self.model.set(**kwargs)
        self.model.compute()

        ell = arange(l_max_scalar+1)
        self.cmb_result = {'cl_%s'%x:(self.model.lensed_cl(l_max_scalar)[x.lower()])*Tcmb**2*1e12*ell*(ell+1)/2/pi
                           for x in ['TT','TE','EE','BB','PP','TP']}

        self.model.struct_cleanup()
        self.model.empty()
        
        return self.cmb_result

    def get_bao_observables(self, z):
        return {'H':self.model.Hubble(z),
                'D_A':self.model.angular_distance(z),
                'c':1.0,
                'r_d':(self.model.get_current_derived_parameters(['rs_rec']))['rs_rec']}
開發者ID:andy16777216,項目名稱:FiniteInflation,代碼行數:40,代碼來源:classynewv2.py

示例3: classy

# 需要導入模塊: from classy import Class [as 別名]
# 或者: from classy.Class import get_current_derived_parameters [as 別名]

#.........這裏部分代碼省略.........
                    'omnuh2':'omega_ncdm',
                    'tau':'tau_reio',
                    'H0':'H0',
                    'massive_neutrinos':'N_ncdm',
                    'massless_neutrinos':'N_ur',
                    'Yp':'YHe',
                    'pivot_scalar':'k_pivot',
                    'omk':'Omega_k',
                    'l_max_scalar':'l_max_scalars',
                    'l_max_tensor':'l_max_tensors',
                    'Tcmb':'T_cmb'
                    }


    def __init__(self):
        super(classy,self).__init__()

        try:
            from classy import Class
        except ImportError:
            raise Exception("Failed to import CLASS python wrapper 'Classy'.")

        self.model = Class()

    #def __call__(self,
    #             **kwargs):
    
    #    d={}
     #   for k, v in kwargs.iteritems():
      #      if k in self.name_mapping and v is not None:
       #         d[self.name_mapping[k]]=v
        #    else:
         #       d[k]=v
    
    #def __call__(self,
                 #ombh2,
                 #omch2,
                 #H0,
                 #As,
                 #ns,
                 #custom1,
                 #custom2,
                 #custom3,
                 #tau,
                 #w=None,
                 #r=None,
                 #nrun=None,
                 #omk=0,
                 #Yp=None,
                 #Tcmb=2.7255,
                 #massless_neutrinos=3.046,
                 #l_max_scalar=3000,
                 #l_max_tensor=3000,
                 #pivot_scalar=0.05,
                 #outputs=[],
                 #**kwargs):

        #print kwargs
        
    def __call__(self,**kwargs):
        #print kwargs
        #print kwargs['classparamlist']
        #print kwargs['d']
        
        d={}
        for k,v in kwargs.iteritems():
            if k in kwargs['classparamlist']:
                if k in self.name_mapping and v is not None:
                    d[self.name_mapping[k]]=v
                else:
                    d[k]=v
            
        
        #d['P_k_ini type']='external_Pk'
        #d['modes'] = 's,t'
        self.model.set(**d)
                       
        l_max = d['l_max_scalars']
        Tcmb =  d['T_cmb']
        
        #print l_max

        #print d
        
        self.model.compute()

        ell = arange(l_max+1)
        self.cmb_result = {'cl_%s'%x:(self.model.lensed_cl(l_max)[x.lower()])*Tcmb**2*1e12*ell*(ell+1)/2/pi
                           for x in ['TT','TE','EE','BB','PP','TP']}

        self.model.struct_cleanup()
        self.model.empty()
        
        return self.cmb_result

    def get_bao_observables(self, z):
        return {'H':self.model.Hubble(z),
                'D_A':self.model.angular_distance(z),
                'c':1.0,
                'r_d':(self.model.get_current_derived_parameters(['rs_rec']))['rs_rec']}
開發者ID:andy16777216,項目名稱:FiniteInflation,代碼行數:104,代碼來源:classy.py

示例4: classy

# 需要導入模塊: from classy import Class [as 別名]
# 或者: from classy.Class import get_current_derived_parameters [as 別名]
class classy(SlikPlugin):
    """
    Plugin for CLASS.
    Credit: Brent Follin, Teresa Hamill, Andy Scacco
    """

    #{cosmoslik name : class name} - This needs to be done even for variables with the same name (because of for loop in self.model.set)!
    name_mapping = {'As':'A_s',
                    'ns':'n_s',
                    'r':'r',
                    'phi0':'custom1',
                    'm6':'custom2',
                    'nt':'n_t',
                    'ombh2':'omega_b',
                    'omch2':'omega_cdm',
                    'omnuh2':'omega_ncdm',
                    'tau':'tau_reio',
                    'H0':'H0',
                    'massive_neutrinos':'N_ncdm',
                    'massless_neutrinos':'N_ur',
                    'Yp':'YHe',
                    'pivot_scalar':'k_pivot',
                    }


    def __init__(self):
        super(classy,self).__init__()

        try:
            from classy import Class
        except ImportError:
            raise Exception("Failed to import CLASS python wrapper 'Classy'.")

        self.model = Class()


    def __call__(self,
                 ombh2,
                 omch2,
                 H0,
                 As,
                 ns,
                 phi0,
                 m6,
                 tau,
                 w=None,
                 r=None,
                 nrun=None,
                 omk=0,
                 Yp=None,
                 Tcmb=2.7255,
                 massless_neutrinos=3.046,
                 l_max_scalar=3000,
                 l_max_tensor=3000,
                 pivot_scalar=0.05,
                 outputs=[],
                 **kwargs):

        d={self.name_mapping[k]:v for k,v in locals().items() 
        if k in self.name_mapping and v is not None}
        d['P_k_ini type']='external_Pk'
        d['modes'] = 's,t'
        self.model.set(output='tCl, lCl, pCl',
                       lensing='yes',
                       l_max_scalars=l_max_scalar,
                       command = '../LSODAtesnors/pk',
                       **d)
        self.model.compute()

        ell = arange(l_max_scalar+1)
        self.cmb_result = {'cl_%s'%x:(self.model.lensed_cl(l_max_scalar)[x.lower()])*Tcmb**2*1e12*ell*(ell+1)/2/pi
                           for x in ['TT','TE','EE','BB','PP','TP']}

        self.model.struct_cleanup()
        self.model.empty()
        
        return self.cmb_result

    def get_bao_observables(self, z):
        return {'H':self.model.Hubble(z),
                'D_A':self.model.angular_distance(z),
                'c':1.0,
                'r_d':(self.model.get_current_derived_parameters(['rs_rec']))['rs_rec']}
開發者ID:andy16777216,項目名稱:FiniteInflation,代碼行數:85,代碼來源:classym2phi2.py

示例5: TestClass

# 需要導入模塊: from classy import Class [as 別名]
# 或者: from classy.Class import get_current_derived_parameters [as 別名]

#.........這裏部分代碼省略.........
        self.assertTrue(setting, "Class failed to initialize with input dict")

        cl_list = ["tCl", "lCl", "pCl", "nCl", "sCl"]

        # Depending on the cases, the compute should fail or not
        should_fail = True
        output = self.scenario["output"].split()
        for elem in output:
            if elem in ["tCl", "pCl"]:
                for elem2 in output:
                    if elem2 == "lCl":
                        should_fail = False
                        break

        if not should_fail:
            self.cosmo.compute()
        else:
            self.assertRaises(CosmoSevereError, self.cosmo.compute)
            return

        self.assertTrue(self.cosmo.state, "Class failed to go through all __init__ methods")
        if self.cosmo.state:
            print "--> Class is ready"
        # Depending
        if "output" in self.scenario.keys():
            # Positive tests
            output = self.scenario["output"]
            for elem in output.split():
                if elem in cl_list:
                    print "--> testing raw_cl function"
                    cl = self.cosmo.raw_cl(100)
                    self.assertIsNotNone(cl, "raw_cl returned nothing")
                    self.assertEqual(np.shape(cl["tt"])[0], 101, "raw_cl returned wrong size")
                if elem == "mPk":
                    print "--> testing pk function"
                    pk = self.cosmo.pk(0.1, 0)
                    self.assertIsNotNone(pk, "pk returned nothing")
            # Negative tests of output functions
            if not any([elem in cl_list for elem in output.split()]):
                print "--> testing absence of any Cl"
                self.assertRaises(CosmoSevereError, self.cosmo.raw_cl, 100)
            if "mPk" not in self.scenario["output"].split():
                print "--> testing absence of mPk"
                # args = (0.1, 0)
                self.assertRaises(CosmoSevereError, self.cosmo.pk, 0.1, 0)

    @parameterized.expand(
        itertools.product(("massless", "massive", "both"), ("photons", "massless", "exact"), ("t", "s, t"))
    )
    def test_tensors(self, scenario, method, modes):
        """Test the new tensor mode implementation"""
        self.scenario = {}
        if scenario == "massless":
            self.scenario.update({"N_eff": 3.046, "N_ncdm": 0})
        elif scenario == "massiv":
            self.scenario.update({"N_eff": 0, "N_ncdm": 2, "m_ncdm": "0.03, 0.04", "deg_ncdm": "2, 1"})
        elif scenario == "both":
            self.scenario.update({"N_eff": 1.5, "N_ncdm": 2, "m_ncdm": "0.03, 0.04", "deg_ncdm": "1, 0.5"})

        sys.stderr.write("\n\n---------------------------------\n")
        sys.stderr.write("| Test case: %s %s %s |\n" % (scenario, method, modes))
        sys.stderr.write("---------------------------------\n")
        self.scenario.update({"tensor method": method, "modes": modes, "output": "tCl, pCl"})
        for key, value in self.scenario.iteritems():
            sys.stderr.write("%s = %s\n" % (key, value))
        sys.stderr.write("\n")
        self.cosmo.set(dict(self.verbose.items() + self.scenario.items()))
        self.cosmo.compute()

    @parameterized.expand(itertools.izip(powerset(["100*theta_s", "Omega_dcdmdr"]), powerset([1.04, 0.20])))
    def test_shooting_method(self, variables, values):
        Omega_cdm = 0.25

        scenario = {"Omega_b": 0.05}

        for variable, value in zip(variables, values):
            scenario.update({variable: value})

        if "Omega_dcdmdr" in variables:
            scenario.update({"Gamma_dcdm": 100, "Omega_cdm": Omega_cdm - scenario["Omega_dcdmdr"]})
        else:
            scenario.update({"Omega_cdm": Omega_cdm})

        sys.stderr.write("\n\n---------------------------------\n")
        sys.stderr.write("| Test shooting: %s |\n" % (", ".join(variables)))
        sys.stderr.write("---------------------------------\n")
        for key, value in scenario.iteritems():
            sys.stderr.write("%s = %s\n" % (key, value))
        sys.stderr.write("\n")

        scenario.update(self.verbose)
        self.assertTrue(self.cosmo.set(scenario), "Class failed to initialise with this input")
        self.assertRaises
        self.cosmo.compute()

        # Now, check that the values are properly extracted
        for variable, value in zip(variables, values):
            if variable == "100*theta_s":
                computed_value = self.cosmo.get_current_derived_parameters([variable])[variable]
                self.assertAlmostEqual(value, computed_value, places=5)
開發者ID:B-Rich,項目名稱:class_public,代碼行數:104,代碼來源:test_class.py

示例6: Class

# 需要導入模塊: from classy import Class [as 別名]
# 或者: from classy.Class import get_current_derived_parameters [as 別名]
                   'P_k_max_1/Mpc':P_k_max_inv_Mpc,
                   'compute damping scale':'yes', # needed to output and plot Silk damping scale
                   'gauge':'newtonian'}

###############
#
# call CLASS
#
###############
M = Class()
M.set(common_settings)
M.compute()
#
# define conformal time sampling array
#
times = M.get_current_derived_parameters(['tau_rec','conformal_age'])
tau_rec=times['tau_rec']
tau_0 = times['conformal_age']
tau1 = np.logspace(math.log10(tau_ini),math.log10(tau_rec),tau_num_early)
tau2 = np.logspace(math.log10(tau_rec),math.log10(tau_0),tau_num_late)[1:]
tau2[-1] *= 0.999 # this tiny shift avoids interpolation errors
tau = np.concatenate((tau1,tau2))
tau_num = len(tau)
#
# use table of background and thermodynamics quantitites to define some functions
# returning some characteristic scales
# (of Hubble crossing, sound horizon crossing, etc.) at different time
#
background = M.get_background() # load background table
#print background.viewkeys()
thermodynamics = M.get_thermodynamics() # load thermodynamics table
開發者ID:lesgourg,項目名稱:class_public,代碼行數:33,代碼來源:many_times.py

示例7: Class

# 需要導入模塊: from classy import Class [as 別名]
# 或者: from classy.Class import get_current_derived_parameters [as 別名]
#Lambda CDM
LCDM = Class()
LCDM.set({'Omega_cdm':0.25,'Omega_b':0.05})
LCDM.compute()


# In[ ]:

#Einstein-de Sitter
CDM = Class()
CDM.set({'Omega_cdm':0.95,'Omega_b':0.05})
CDM.compute()

# Just to cross-check that Omega_Lambda is negligible
# (but not exactly zero because we neglected radiation)
derived = CDM.get_current_derived_parameters(['Omega0_lambda'])
print derived
print "Omega_Lambda =",derived['Omega0_lambda']


# In[ ]:

#Get background quantities and recover their names:
baLCDM = LCDM.get_background()
baCDM = CDM.get_background()
baCDM.viewkeys()


# In[ ]:

#Get H_0 in order to plot the distances in this unit
開發者ID:lesgourg,項目名稱:class_public,代碼行數:33,代碼來源:distances.py

示例8: classy

# 需要導入模塊: from classy import Class [as 別名]
# 或者: from classy.Class import get_current_derived_parameters [as 別名]
class classy(SlikPlugin):
    """
    Plugin for CLASS.

    Credit: Brent Follin, Teresa Hamill
    """

    #{cosmoslik name : class name}
    name_mapping = {'As':'A_s',
                    'ns':'n_s',
                    'r':'r',
                    'nt':'n_t',
                    'ombh2':'omega_b',
                    'omch2':'omega_cdm',
                    'omnuh2':'omega_ncdm',
                    'tau':'tau_reio',
                    'H0':'H0',
                    'massive_neutrinos':'N_ncdm',
                    'massless_neutrinos':'N_ur',
                    'Yp':'YHe',
                    'pivot_scalar':'k_pivot'}


    def __init__(self):
        super(classy,self).__init__()

        try:
            from classy import Class
        except ImportError:
            raise Exception("Failed to import CLASS python wrapper 'Classy'.")

        self.model = Class()


    def __call__(self,
                 ombh2,
                 omch2,
                 H0,
                 As,
                 ns,
                 tau,
                 omnuh2, #0.006
                 w=None,
                 r=None,
                 nrun=None,
                 omk=0,
                 Yp=None,
                 Tcmb=2.7255,
                 massive_neutrinos=1,
                 massless_neutrinos=2.046,
                 l_max_scalar=3000,
                 l_max_tensor=3000,
                 pivot_scalar=0.002,
                 outputs=[],
                 **kwargs):


        
        self.model.set(output='tCl, lCl, pCl',
                       lensing='yes',
                       l_max_scalars=l_max_scalar,
                       **{self.name_mapping[k]:v for k,v in locals().items() 
                          if k in self.name_mapping and v is not None})
        self.model.compute()

        ell = arange(l_max_scalar+1)
        self.cmb_result = {'cl_%s'%x:(self.model.lensed_cl(l_max_scalar)[x.lower()])*Tcmb**2*1e12*ell*(ell+1)/2/pi
                           for x in ['TT','TE','EE','BB','PP','TP']}

        self.model.struct_cleanup()
        self.model.empty()
        
        return self.cmb_result

    def get_bao_observables(self, z):
        return {'H':self.model.Hubble(z),
                'D_A':self.model.angular_distance(z),
                'c':1.0,
                'r_d':(self.model.get_current_derived_parameters(['rs_rec']))['rs_rec']}
開發者ID:andy16777216,項目名稱:FiniteInflation,代碼行數:81,代碼來源:classy1.py

示例9: classy

# 需要導入模塊: from classy import Class [as 別名]
# 或者: from classy.Class import get_current_derived_parameters [as 別名]
class classy(SlikPlugin):
    """
    Plugin for CLASS.
    Credit: Brent Follin, Teresa Hamill, Andy Scacco
    """

    #{cosmoslik name : class name} - This needs to be done even for variables with the same name (because of for loop in self.model.set)!
    name_mapping = {'As':'A_s',
                    'ns':'n_s',
                    'r':'r',
                    'k_c':'k_c',
                    'alpha_exp':'alpha_exp',
                    'nt':'n_t',
                    'ombh2':'omega_b',
                    'omch2':'omega_cdm',
                    'omnuh2':'omega_ncdm',
                    'tau':'tau_reio',
                    'H0':'H0',
                    'massive_neutrinos':'N_ncdm',
                    'massless_neutrinos':'N_ur',
                    'Yp':'YHe',
                    'pivot_scalar':'k_pivot',
                    #'Tcmb':'T_cmb',
                    #'P_k_max_hinvMpc':'P_k_max_h/Mpc'
                    #'w':'w0_fld',
                    #'nrun':'alpha_s',
                    #'omk':'Omega_k',
                    #'l_max_scalar':'l_max_scalars',
                    #'l_max_tensor':'l_max_tensors'
                    }


    def __init__(self):
        super(classy,self).__init__()

        try:
            from classy import Class
        except ImportError:
            raise Exception("Failed to import CLASS python wrapper 'Classy'.")

        self.model = Class()


    def __call__(self,
                 ombh2,
                 omch2,
                 H0,
                 As,
                 ns,
                 k_c,
                 alpha_exp,
                 tau,
                 #omnuh2=0, #0.006  #None means that Class will take the default for this, maybe?
                 w=None,
                 r=None,
                 nrun=None,
                 omk=0,
                 Yp=None,
                 Tcmb=2.7255,
                 #massive_neutrinos=0,
                 massless_neutrinos=3.046,
                 l_max_scalar=3000,
                 l_max_tensor=3000,
                 pivot_scalar=0.05,
                 outputs=[],
                 **kwargs):


        
        self.model.set(output='tCl, lCl, pCl',
                       lensing='yes',
                       l_max_scalars=l_max_scalar,
                       **{self.name_mapping[k]:v for k,v in locals().items() 
                          if k in self.name_mapping and v is not None})
        self.model.compute()

        ell = arange(l_max_scalar+1)
        self.cmb_result = {'cl_%s'%x:(self.model.lensed_cl(l_max_scalar)[x.lower()])*Tcmb**2*1e12*ell*(ell+1)/2/pi
                           for x in ['TT','TE','EE','BB','PP','TP']}

        self.model.struct_cleanup()
        self.model.empty()
        
        return self.cmb_result

    def get_bao_observables(self, z):
        return {'H':self.model.Hubble(z),
                'D_A':self.model.angular_distance(z),
                'c':1.0,
                'r_d':(self.model.get_current_derived_parameters(['rs_rec']))['rs_rec']}
開發者ID:andy16777216,項目名稱:FiniteInflation,代碼行數:92,代碼來源:classyAACF.py

示例10: Model

# 需要導入模塊: from classy import Class [as 別名]
# 或者: from classy.Class import get_current_derived_parameters [as 別名]

#.........這裏部分代碼省略.........

        key = varied_name

        if texname:
            self.set_texnames({varied_name: texname})
        elif key not in self.texnames:  # texname will not be set at this stage. No check required
            self.set_texnames({varied_name: varied_name})

        if (not update) or (key not in self.computed.keys()):
            self.computed[key] = od()

        for val in values:
            # key = "{}={}".format(varied_name, val)
            params["parameters_smg"] = inip.vary_params(params["parameters_smg"], [[index_variable, val]])

            # It might be after the try to not store empty dictionaries.
            # Nevertheless, I find more useful having them to keep track of
            # those failed and, perhaps, to implement a method to obtain them
            # with Omega_smg_debug.
            d = self.computed[key][val] = {}

            self.cosmo.empty()
            self.cosmo.set(params)

            try:
                self.cosmo.compute()
            except Exception, e:
                print "Error: skipping {}={}".format(key, val)
                if cosmo_msg:
                    print e

                continue

            d['tunned'] = self.cosmo.get_current_derived_parameters(['tuning_parameter'])['tuning_parameter']

            for lst in [[back, 'back', self.cosmo.get_background],
                        [thermo, 'thermo', self.cosmo.get_thermodynamics],
                        [prim, 'prim', self.cosmo.get_thermodynamics]]:
                if lst[0]:
                    output = lst[2]()
                    if lst[0][0] == 'all':
                        d[lst[1]] = output
                    else:
                        d[lst[1]] = {}
                        for item in back:
                            if type(item) is list:
                                d[lst[1]].update({item[0]: output[item[0]][item[1]]})
                            else:
                                d[lst[1]].update({item: output[item]})

            if pert:
                # Perturbation is tricky because it can accept two optional
                # argument for get_perturbations and this method returns a
                # dictionary {'kind_of_pert': [{variable: list_values}]}, where
                # each item in the list is for a k (chosen in params).
                if type(pert[0]) is dict:
                    output = self.cosmo.get_perturbations(pert[0]['z'], pert[0]['output_format'])
                    if pert[1] == 'all':
                        d['pert'] = output
                else:
                    output = self.cosmo.get_perturbations()
                    if pert[0] == 'all':
                        d['pert'] = output

                if (type(pert[0]) is not dict) and (pert[0] != 'all'):
                    d['pert'] = {}
開發者ID:miguelzuma,項目名稱:work-in-class,代碼行數:70,代碼來源:compute_models.py

示例11: amplitude

# 需要導入模塊: from classy import Class [as 別名]
# 或者: from classy.Class import get_current_derived_parameters [as 別名]
Theta0 = 0.25*one_k['delta_g']
phi = one_k['phi']
psi = one_k['psi']
theta_b = one_k['theta_b']
a = one_k['a']
# compute related quantitites
R = 3./4.*M.Omega_b()/M.Omega_g()*a    # R = 3/4 * (rho_b/rho_gamma)
zero_point = -(1.+R)*psi               # zero point of oscillations: -(1.+R)*psi
#
# get Theta0 oscillation amplitude (for vertical scale of plot)
#
Theta0_amp = max(Theta0.max(),-Theta0.min())
#
# get the time of decoupling
#
quantities = M.get_current_derived_parameters(['tau_rec'])
# print times.viewkeys()
tau_rec = quantities['tau_rec']
#
# use table of background quantitites to find the time of
# Hubble crossing (k / (aH)= 2 pi), sound horizon crossing (k * rs = 2pi)
#
background = M.get_background() # load background table
#print background.viewkeys()
#
background_tau = background['conf. time [Mpc]'] # read confromal times in background table
background_z = background['z'] # read redshift
background_k_over_aH = k/background['H [1/Mpc]']*(1.+background['z']) # read k/aH = k(1+z)/H
background_k_rs = k * background['comov.snd.hrz.'] # read k * rs
background_rho_m_over_r =    (background['(.)rho_b']+background['(.)rho_cdm'])    /(background['(.)rho_g']+background['(.)rho_ur']) # read rho_r / rho_m (to find time of equality)
#
開發者ID:lesgourg,項目名稱:class_public,代碼行數:33,代碼來源:one_k.py


注:本文中的classy.Class.get_current_derived_parameters方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。