本文整理匯總了Python中classy.Class.pk方法的典型用法代碼示例。如果您正苦於以下問題:Python Class.pk方法的具體用法?Python Class.pk怎麽用?Python Class.pk使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類classy.Class
的用法示例。
在下文中一共展示了Class.pk方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: m_Pk
# 需要導入模塊: from classy import Class [as 別名]
# 或者: from classy.Class import pk [as 別名]
def m_Pk(k=np.logspace(-3, 0., 100), z=0.53, nl_model='trg'):
print k
cosmo = Class()
CLASS_INPUT = {}
CLASS_INPUT['Mnu'] = ([{'N_eff': 0.0, 'N_ncdm': 1, 'm_ncdm': 0.06, 'deg_ncdm': 3.0}], 'normal')
CLASS_INPUT['Output_spectra'] = ([{'output': 'mPk', 'P_k_max_1/Mpc': 1, 'z_pk': z}], 'power')
CLASS_INPUT['Nonlinear'] = ([{'non linear': nl_model}], 'power')
verbose = {}
# 'input_verbose': 1,
# 'background_verbose': 1,
# 'thermodynamics_verbose': 1,
# 'perturbations_verbose': 1,
# 'transfer_verbose': 1,
# 'primordial_verbose': 1,
# 'spectra_verbose': 1,
# 'nonlinear_verbose': 1,
# 'lensing_verbose': 1,
# 'output_verbose': 1
# }
cosmo.struct_cleanup()
cosmo.empty()
INPUTPOWER = []
INPUTNORMAL = [{}]
for key, value in CLASS_INPUT.iteritems():
models, state = value
if state == 'power':
INPUTPOWER.append([{}]+models)
else:
INPUTNORMAL.extend(models)
PRODPOWER = list(itertools.product(*INPUTPOWER))
DICTARRAY = []
for normelem in INPUTNORMAL:
for powelem in PRODPOWER: # itertools.product(*modpower):
temp_dict = normelem.copy()
for elem in powelem:
temp_dict.update(elem)
DICTARRAY.append(temp_dict)
scenario = {}
for dic in DICTARRAY:
scenario.update(dic)
setting = cosmo.set(dict(verbose.items()+scenario.items()))
cosmo.compute()
pk_out = []
for k_i in k:
pk_out.append(cosmo.pk(k_i,z))
return pk_out
示例2: calculate_power
# 需要導入模塊: from classy import Class [as 別名]
# 或者: from classy.Class import pk [as 別名]
def calculate_power(cosmology, k_min, k_max, z=0, num_k=500, scaled_by_h=True,
n_s=0.9619, logA=3.0980):
"""
Calculate the power spectrum P(k,z) over the range k_min <= k <= k_max.
"""
try:
from classy import Class
cosmo = Class()
except ImportError:
raise RuntimeError('power.calculate_power requires classy.')
class_parameters = get_class_parameters(cosmology)
class_parameters['output'] = 'mPk'
if scaled_by_h:
class_parameters['P_k_max_h/Mpc'] = k_max
else:
class_parameters['P_k_max_1/Mpc'] = k_max
class_parameters['n_s'] = n_s
class_parameters['ln10^{10}A_s'] = logA
cosmo.set(class_parameters)
cosmo.compute()
if scaled_by_h:
k_scale = cosmo.h()
Pk_scale = cosmo.h()**3
else:
k_scale = 1.
Pk_scale = 1.
result = np.empty((num_k,), dtype=[('k', float), ('Pk', float)])
result['k'][:] = np.logspace(np.log10(k_min), np.log10(k_max), num_k)
for i, k in enumerate(result['k']):
result['Pk'][i] = cosmo.pk(k * k_scale, z) * Pk_scale
cosmo.struct_cleanup()
cosmo.empty()
return result
示例3: TestClass
# 需要導入模塊: from classy import Class [as 別名]
# 或者: from classy.Class import pk [as 別名]
#.........這裏部分代碼省略.........
self.assertTrue(setting, "Class failed to initialize with input dict")
cl_list = ["tCl", "lCl", "pCl", "nCl", "sCl"]
# Depending on the cases, the compute should fail or not
should_fail = True
output = self.scenario["output"].split()
for elem in output:
if elem in ["tCl", "pCl"]:
for elem2 in output:
if elem2 == "lCl":
should_fail = False
break
if not should_fail:
self.cosmo.compute()
else:
self.assertRaises(CosmoSevereError, self.cosmo.compute)
return
self.assertTrue(self.cosmo.state, "Class failed to go through all __init__ methods")
if self.cosmo.state:
print "--> Class is ready"
# Depending
if "output" in self.scenario.keys():
# Positive tests
output = self.scenario["output"]
for elem in output.split():
if elem in cl_list:
print "--> testing raw_cl function"
cl = self.cosmo.raw_cl(100)
self.assertIsNotNone(cl, "raw_cl returned nothing")
self.assertEqual(np.shape(cl["tt"])[0], 101, "raw_cl returned wrong size")
if elem == "mPk":
print "--> testing pk function"
pk = self.cosmo.pk(0.1, 0)
self.assertIsNotNone(pk, "pk returned nothing")
# Negative tests of output functions
if not any([elem in cl_list for elem in output.split()]):
print "--> testing absence of any Cl"
self.assertRaises(CosmoSevereError, self.cosmo.raw_cl, 100)
if "mPk" not in self.scenario["output"].split():
print "--> testing absence of mPk"
# args = (0.1, 0)
self.assertRaises(CosmoSevereError, self.cosmo.pk, 0.1, 0)
@parameterized.expand(
itertools.product(("massless", "massive", "both"), ("photons", "massless", "exact"), ("t", "s, t"))
)
def test_tensors(self, scenario, method, modes):
"""Test the new tensor mode implementation"""
self.scenario = {}
if scenario == "massless":
self.scenario.update({"N_eff": 3.046, "N_ncdm": 0})
elif scenario == "massiv":
self.scenario.update({"N_eff": 0, "N_ncdm": 2, "m_ncdm": "0.03, 0.04", "deg_ncdm": "2, 1"})
elif scenario == "both":
self.scenario.update({"N_eff": 1.5, "N_ncdm": 2, "m_ncdm": "0.03, 0.04", "deg_ncdm": "1, 0.5"})
sys.stderr.write("\n\n---------------------------------\n")
sys.stderr.write("| Test case: %s %s %s |\n" % (scenario, method, modes))
sys.stderr.write("---------------------------------\n")
self.scenario.update({"tensor method": method, "modes": modes, "output": "tCl, pCl"})
for key, value in self.scenario.iteritems():
sys.stderr.write("%s = %s\n" % (key, value))
sys.stderr.write("\n")
self.cosmo.set(dict(self.verbose.items() + self.scenario.items()))
self.cosmo.compute()
@parameterized.expand(itertools.izip(powerset(["100*theta_s", "Omega_dcdmdr"]), powerset([1.04, 0.20])))
def test_shooting_method(self, variables, values):
Omega_cdm = 0.25
scenario = {"Omega_b": 0.05}
for variable, value in zip(variables, values):
scenario.update({variable: value})
if "Omega_dcdmdr" in variables:
scenario.update({"Gamma_dcdm": 100, "Omega_cdm": Omega_cdm - scenario["Omega_dcdmdr"]})
else:
scenario.update({"Omega_cdm": Omega_cdm})
sys.stderr.write("\n\n---------------------------------\n")
sys.stderr.write("| Test shooting: %s |\n" % (", ".join(variables)))
sys.stderr.write("---------------------------------\n")
for key, value in scenario.iteritems():
sys.stderr.write("%s = %s\n" % (key, value))
sys.stderr.write("\n")
scenario.update(self.verbose)
self.assertTrue(self.cosmo.set(scenario), "Class failed to initialise with this input")
self.assertRaises
self.cosmo.compute()
# Now, check that the values are properly extracted
for variable, value in zip(variables, values):
if variable == "100*theta_s":
computed_value = self.cosmo.get_current_derived_parameters([variable])[variable]
self.assertAlmostEqual(value, computed_value, places=5)
示例4: P
# 需要導入模塊: from classy import Class [as 別名]
# 或者: from classy.Class import pk [as 別名]
# In[ ]:
plt.savefig('warmup_cltt.pdf')
# In[ ]:
# get P(k) at redhsift z=0
import numpy as np
kk = np.logspace(-4,np.log10(3),1000) # k in h/Mpc
Pk = [] # P(k) in (Mpc/h)**3
h = LambdaCDM.h() # get reduced Hubble for conversions to 1/Mpc
for k in kk:
Pk.append(LambdaCDM.pk(k*h,0.)*h**3) # function .pk(k,z)
# In[ ]:
# plot P(k)
plt.figure(2)
plt.xscale('log');plt.yscale('log');plt.xlim(kk[0],kk[-1])
plt.xlabel(r'$k \,\,\,\, [h/\mathrm{Mpc}]$')
plt.ylabel(r'$P(k) \,\,\,\, [\mathrm{Mpc}/h]^3$')
plt.plot(kk,Pk,'b-')
# In[ ]:
plt.savefig('warmup_pk.pdf')
示例5: TestClass
# 需要導入模塊: from classy import Class [as 別名]
# 或者: from classy.Class import pk [as 別名]
#.........這裏部分代碼省略.........
self.scenario.update({'Omega_k': 0.01})
elif name == 'Negative_Omega_k':
self.scenario.update({'Omega_k': -0.01})
elif name == 'Isocurvature_modes':
self.scenario.update({'ic': 'ad,nid,cdi', 'c_ad_cdi': -0.5})
self.scenario.update(scenario)
if scenario != {}:
self.scenario.update(gauge)
self.scenario.update(nonlinear)
sys.stderr.write('\n\n---------------------------------\n')
sys.stderr.write('| Test case %s |\n' % name)
sys.stderr.write('---------------------------------\n')
for key, value in self.scenario.iteritems():
sys.stderr.write("%s = %s\n" % (key, value))
sys.stderr.write("\n")
setting = self.cosmo.set(
dict(self.verbose.items()+self.scenario.items()))
self.assertTrue(setting, "Class failed to initialize with input dict")
cl_list = ['tCl', 'lCl', 'pCl', 'nCl', 'sCl']
# Depending on the cases, the compute should fail or not
should_fail = True
output = self.scenario['output'].split()
for elem in output:
if elem in ['tCl', 'pCl']:
for elem2 in output:
if elem2 == 'lCl':
should_fail = False
break
if not should_fail:
self.cosmo.compute()
else:
self.assertRaises(CosmoSevereError, self.cosmo.compute)
return
self.assertTrue(
self.cosmo.state,
"Class failed to go through all __init__ methods")
if self.cosmo.state:
print '--> Class is ready'
# Depending
if 'output' in self.scenario.keys():
# Positive tests
output = self.scenario['output']
for elem in output.split():
if elem in cl_list:
print '--> testing raw_cl function'
cl = self.cosmo.raw_cl(100)
self.assertIsNotNone(cl, "raw_cl returned nothing")
self.assertEqual(
np.shape(cl['tt'])[0], 101,
"raw_cl returned wrong size")
if elem == 'mPk':
print '--> testing pk function'
pk = self.cosmo.pk(0.1, 0)
self.assertIsNotNone(pk, "pk returned nothing")
# Negative tests of output functions
if not any([elem in cl_list for elem in output.split()]):
print '--> testing absence of any Cl'
self.assertRaises(CosmoSevereError, self.cosmo.raw_cl, 100)
if 'mPk' not in self.scenario['output'].split():
print '--> testing absence of mPk'
#args = (0.1, 0)
self.assertRaises(CosmoSevereError, self.cosmo.pk, 0.1, 0)
print '~~~~~~~~ passed ? '
@parameterized.expand(
itertools.product(
('massless', 'massive', 'both'),
('photons', 'massless', 'exact'),
('t', 's, t')))
def test_tensors(self, scenario, method, modes):
"""Test the new tensor mode implementation"""
self.scenario = {}
if scenario == 'massless':
self.scenario.update({'N_eff': 3.046, 'N_ncdm':0})
elif scenario == 'massiv':
self.scenario.update(
{'N_eff': 0, 'N_ncdm': 2, 'm_ncdm': '0.03, 0.04',
'deg_ncdm': '2, 1'})
elif scenario == 'both':
self.scenario.update(
{'N_eff': 1.5, 'N_ncdm': 2, 'm_ncdm': '0.03, 0.04',
'deg_ncdm': '1, 0.5'})
self.scenario.update({
'tensor method': method, 'modes': modes,
'output': 'tCl, pCl'})
for key, value in self.scenario.iteritems():
sys.stderr.write("%s = %s\n" % (key, value))
sys.stderr.write("\n")
self.cosmo.set(
dict(self.verbose.items()+self.scenario.items()))
self.cosmo.compute()
示例6: TestClass
# 需要導入模塊: from classy import Class [as 別名]
# 或者: from classy.Class import pk [as 別名]
#.........這裏部分代碼省略.........
# 'lensing' is always set to yes. Therefore, trying to compute 'tCl' or
# 'pCl' will fail except if we also ask for 'lCl'. The flag
# 'should_fail' stores this status.
sys.stderr.write("Should")
should_fail = self.test_incompatible_input()
if should_fail:
sys.stderr.write(" fail...\n")
else:
sys.stderr.write(" not fail...\n")
if not should_fail:
self.cosmo.compute()
else:
self.assertRaises(CosmoSevereError, self.cosmo.compute)
return
self.assertTrue(self.cosmo.state, "Class failed to go through all __init__ methods")
if self.cosmo.state:
print "--> Class is ready"
# Depending
if "output" in self.scenario.keys():
# Positive tests of raw cls
output = self.scenario["output"]
for elem in output.split():
if elem in cl_dict.keys():
for cl_type in cl_dict[elem]:
sys.stderr.write("--> testing raw_cl for %s\n" % cl_type)
cl = self.cosmo.raw_cl(100)
self.assertIsNotNone(cl, "raw_cl returned nothing")
self.assertEqual(np.shape(cl[cl_type])[0], 101, "raw_cl returned wrong size")
# TODO do the same for lensed if 'lCl' is there, and for
# density cl
if elem == "mPk":
sys.stderr.write("--> testing pk function\n")
pk = self.cosmo.pk(0.1, 0)
self.assertIsNotNone(pk, "pk returned nothing")
# Negative tests of output functions
if not any([elem in cl_dict.keys() for elem in output.split()]):
sys.stderr.write("--> testing absence of any Cl\n")
self.assertRaises(CosmoSevereError, self.cosmo.raw_cl, 100)
if "mPk" not in output.split():
sys.stderr.write("--> testing absence of mPk\n")
self.assertRaises(CosmoSevereError, self.cosmo.pk, 0.1, 0)
if COMPARE_OUTPUT:
# Now, compute with Newtonian gauge, and compare the results
self.cosmo_newt.set(dict(self.verbose.items() + self.scenario.items()))
self.cosmo_newt.set({"gauge": "newtonian"})
self.cosmo_newt.compute()
# Check that the computation worked
self.assertTrue(self.cosmo_newt.state, "Class failed to go through all __init__ methods in Newtonian gauge")
self.compare_output(self.cosmo, self.cosmo_newt)
def test_incompatible_input(self):
should_fail = False
# If we have tensor modes, we must have one tensor observable,
# either tCl or pCl.
if has_tensor(self.scenario):
if "output" not in self.scenario.keys():
should_fail = True
else:
output = self.scenario["output"].split()
if "tCl" not in output and "pCl" not in output:
示例7: get_masses
# 需要導入模塊: from classy import Class [as 別名]
# 或者: from classy.Class import pk [as 別名]
# normal hierarchy
[m1, m2, m3] = get_masses(2.45e-3,7.50e-5, sum_masses, 'NH')
NH = Class()
NH.set(commonsettings)
NH.set({'m_ncdm':str(m1)+','+str(m2)+','+str(m3)})
NH.compute()
# inverted hierarchy
[m1, m2, m3] = get_masses(2.45e-3,7.50e-5, sum_masses, 'IH')
IH = Class()
IH.set(commonsettings)
IH.set({'m_ncdm':str(m1)+','+str(m2)+','+str(m3)})
IH.compute()
pkNH = []
pkIH = []
for k in kvec:
pkNH.append(NH.pk(k,0.))
pkIH.append(IH.pk(k,0.))
NH.struct_cleanup()
IH.struct_cleanup()
# extract h value to convert k from 1/Mpc to h/Mpc
h = NH.h()
plt.semilogx(kvec/h,1-np.array(pkNH)/np.array(pkIH))
legarray.append(r'$\Sigma m_i = '+str(sum_masses)+'$eV')
plt.axhline(0,color='k')
plt.xlim(kvec[0]/h,kvec[-1]/h)
plt.xlabel(r'$k [h \mathrm{Mpc}^{-1}]$')
plt.ylabel(r'$1-P(k)^\mathrm{NH}/P(k)^\mathrm{IH}$')
plt.legend(legarray)
示例8: Model
# 需要導入模塊: from classy import Class [as 別名]
# 或者: from classy.Class import pk [as 別名]
class Model():
def __init__(self, cosmo=None):
"""
Initialize the Model class. By default Model uses its own Class
instance.
cosmo = external Class instance. Default is None
"""
if cosmo:
self.cosmo = cosmo
else:
self.cosmo = Class()
self.computed = {}
self.texnames = {}
def __set_scale(self, axes, xscale, yscale):
"""
Set scales for axes in axes array.
axes = axes array (e.g. f, ax = plt.subplots(2,2))
xscale = linear array of xscale.
yscale = linear array of yscale.
Scales are set once axes is flatten. Each plot is counted from left to
right an from top to bottom.
"""
for i, ax in enumerate(axes.flat):
ax.set_xscale(xscale[i])
ax.set_yscale(yscale[i])
def __set_label(self, axes, xlabel, ylabel):
"""
Set labels for axes in axes array.
axes = axes array (e.g. f, ax = plt.subplots(2,2))
xlabel = linear array of xlabels.
ylabel = linear array of ylabels.
Labels are set once axes is flatten. Each plot is counted from left to
right an from top to bottom.
"""
for i, ax in enumerate(axes.flat):
ax.set_xlabel(xlabel[i])
ax.set_ylabel(ylabel[i])
def __store_cl(self, cl_dic):
"""
Store cl's as (l*(l+1)/2pi)*cl, which is much more useful.
"""
ell = cl_dic['ell'][2:]
for cl, list_val in cl_dic.iteritems():
list_val = list_val[2:]
if (list_val == ell).all():
cl_dic[cl] = list_val
continue
list_val = (ell * (ell + 1) / (2 * np.pi)) * list_val
cl_dic[cl] = list_val # Remove first two null items (l=0,1)
return cl_dic
def add_derived(self, varied_name, keys, value):
"""
Add a derived parameter for varied_name dictionary.
varied_name = varied variable's name.
keys = list of keys in descending level.
value = value to store for new dictionary key.
"""
dic = self.computed[varied_name]
for key in keys:
if key not in dic:
dic[key] = {}
dic = dic[key]
dic.update(value)
def compute_models(self, params, varied_name, index_variable, values,
back=[], thermo=[], prim=[], pert=[], trans=[],
pk=[0.0001, 0.1, 100], extra=[], update=True,
cosmo_msg=False, texname=""):
"""
Fill dic with the hi_class output structures for the model with given
params, modifying the varied_name value with values.
params = parameters to be set in Class. They must be in agreement with
what is asked for.
varied_name = the name of the variable you are modifying. It will be
used as key in dic assigned to its background structures.
index_variable = variable's index in parameters_smg array.
values = varied variable values you want to compute the cosmology for.
back = list of variables to store from background. If 'all', store the
whole dictionary.
thermo = list of variables to store from thermodynamics. If 'all',
store the whole dictionary.
prim = list of variables to store from primordial. If 'all', store the
#.........這裏部分代碼省略.........