本文整理匯總了Python中classy.Class類的典型用法代碼示例。如果您正苦於以下問題:Python Class類的具體用法?Python Class怎麽用?Python Class使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。
在下文中一共展示了Class類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: m_Pk
def m_Pk(k=np.logspace(-3, 0., 100), z=0.53, nl_model='trg'):
print k
cosmo = Class()
CLASS_INPUT = {}
CLASS_INPUT['Mnu'] = ([{'N_eff': 0.0, 'N_ncdm': 1, 'm_ncdm': 0.06, 'deg_ncdm': 3.0}], 'normal')
CLASS_INPUT['Output_spectra'] = ([{'output': 'mPk', 'P_k_max_1/Mpc': 1, 'z_pk': z}], 'power')
CLASS_INPUT['Nonlinear'] = ([{'non linear': nl_model}], 'power')
verbose = {}
# 'input_verbose': 1,
# 'background_verbose': 1,
# 'thermodynamics_verbose': 1,
# 'perturbations_verbose': 1,
# 'transfer_verbose': 1,
# 'primordial_verbose': 1,
# 'spectra_verbose': 1,
# 'nonlinear_verbose': 1,
# 'lensing_verbose': 1,
# 'output_verbose': 1
# }
cosmo.struct_cleanup()
cosmo.empty()
INPUTPOWER = []
INPUTNORMAL = [{}]
for key, value in CLASS_INPUT.iteritems():
models, state = value
if state == 'power':
INPUTPOWER.append([{}]+models)
else:
INPUTNORMAL.extend(models)
PRODPOWER = list(itertools.product(*INPUTPOWER))
DICTARRAY = []
for normelem in INPUTNORMAL:
for powelem in PRODPOWER: # itertools.product(*modpower):
temp_dict = normelem.copy()
for elem in powelem:
temp_dict.update(elem)
DICTARRAY.append(temp_dict)
scenario = {}
for dic in DICTARRAY:
scenario.update(dic)
setting = cosmo.set(dict(verbose.items()+scenario.items()))
cosmo.compute()
pk_out = []
for k_i in k:
pk_out.append(cosmo.pk(k_i,z))
return pk_out
示例2: setup
def setup(self):
"""
Create an instance of Class and attach it to self.
"""
self.cosmo = Class()
self.cosmo.set(self.constants)
self.cosmo.compute()
self.cosmo.struct_cleanup()
示例3: __init__
def __init__(self):
super(classy,self).__init__()
try:
from classy import Class
except ImportError:
raise Exception("Failed to import CLASS python wrapper 'Classy'.")
self.model = Class()
示例4: setUp
def setUp(self):
"""
set up data used in the tests.
setUp is called before each test function execution.
"""
self.cosmo = Class()
self.cosmo_newt = Class()
self.verbose = {
'input_verbose': 1,
'background_verbose': 1,
'thermodynamics_verbose': 1,
'perturbations_verbose': 1,
'transfer_verbose': 1,
'primordial_verbose': 1,
'spectra_verbose': 1,
'nonlinear_verbose': 1,
'lensing_verbose': 1,
'output_verbose': 1}
self.scenario = {}
示例5: __init__
def __init__(self, cosmo=None):
"""
Initialize the Model class. By default Model uses its own Class
instance.
cosmo = external Class instance. Default is None
"""
if cosmo:
self.cosmo = cosmo
else:
self.cosmo = Class()
self.computed = {}
self.texnames = {}
示例6: setUp
def setUp(self):
"""
set up data used in the tests.
setUp is called before each test function execution.
"""
self.cosmo = Class()
self.verbose = {
"input_verbose": 1,
"background_verbose": 1,
"thermodynamics_verbose": 1,
"perturbations_verbose": 1,
"transfer_verbose": 1,
"primordial_verbose": 1,
"spectra_verbose": 1,
"nonlinear_verbose": 1,
"lensing_verbose": 1,
"output_verbose": 1,
}
self.scenario = {"lensing": "yes"}
示例7: ClassCoreModule
class ClassCoreModule(object):
def __init__(self, mapping=DEFAULT_PARAM_MAPPING, constants=CLASS_DEFAULT_PARAMS):
"""
Core Module for the delegation of the computation of the cmb power
spectrum to the Class wrapper classy.
The defaults are for the 6 LambdaCDM cosmological parameters.
:param mapping: (optional) dict mapping name of the parameter to the index
:param constants: (optional) dict with constants overwriting CLASS defaults
"""
self.mapping = mapping
if constants is None:
constants = {}
self.constants = constants
def __call__(self, ctx):
p1 = ctx.getParams()
params = self.constants.copy()
for k,v in self.mapping.items():
params[k] = p1[v]
self.cosmo.set(params)
self.cosmo.compute()
if self.constants['lensing'] == 'yes':
cls = self.cosmo.lensed_cl()
else:
cls = self.cosmo.raw_cl()
Tcmb = self.cosmo.T_cmb()*1e6
frac = Tcmb**2 * cls['ell'][2:] * (cls['ell'][2:] + 1) / 2. / pi
ctx.add(CL_TT_KEY, frac*cls['tt'][2:])
ctx.add(CL_TE_KEY, frac*cls['te'][2:])
ctx.add(CL_EE_KEY, frac*cls['ee'][2:])
ctx.add(CL_BB_KEY, frac*cls['bb'][2:])
self.cosmo.struct_cleanup()
def setup(self):
"""
Create an instance of Class and attach it to self.
"""
self.cosmo = Class()
self.cosmo.set(self.constants)
self.cosmo.compute()
self.cosmo.struct_cleanup()
示例8: loglkl
def loglkl(self, params):
cosmo = Class()
cosmo.set(params)
cosmo.compute()
chi2 = 0.
# for each point, compute angular distance da, radial distance dr,
# volume distance dv, sound horizon at baryon drag rs_d,
# theoretical prediction and chi2 contribution
for i in range(self.num_points):
da = cosmo.angular_distance(self.z[i])
dr = self.z[i] / cosmo.Hubble(self.z[i])
dv = pow(da * da * (1 + self.z[i]) * (1 + self.z[i]) * dr, 1. / 3.)
rs = cosmo.rs_drag()
if self.type[i] == 3:
theo = dv / rs
elif self.type[i] == 4:
theo = dv
elif self.type[i] == 5:
theo = da / rs
elif self.type[i] == 6:
theo = 1. / cosmo.Hubble(self.z[i]) / rs
elif self.type[i] == 7:
theo = rs / dv
chi2 += ((theo - self.data[i]) / self.error[i]) ** 2
# return ln(L)
# lkl = - 0.5 * chi2
# return -2ln(L)
lkl = chi2
return lkl
示例9: ComputeTransferData
def ComputeTransferData(settings, redshift):
database_key = settings.copy()
database_key.update({'redshift': tuple(redshift)})
database = Database.Database(config.DATABASE_DIR)
if database_key in database:
return database[database_key], redshift
else:
cosmo = Class()
cosmo.set(settings)
cosmo.compute()
outputData = [cosmo.get_transfer(z) for z in redshift]
# Calculate d_g/4+psi
for transfer_function_dict in outputData:
transfer_function_dict["d_g/4 + psi"] = transfer_function_dict["d_g"]/4 + transfer_function_dict["psi"]
# Now filter the relevant fields
fields = TRANSFER_QUANTITIES + ["k (h/Mpc)"]
outputData = [{field: outputData[i][field] for field in fields} for i in range(len(redshift))]
database[database_key] = outputData
return outputData, redshift
示例10: Class
params = {
'output': 'tCl lCl',
'l_max_scalars': 2508,
'lensing': 'yes',
'P_k_ini type': 'external_Pk',
'command': 'python /home/andrew/Research/tools/class_public-2.4.3/external_Pk/generate_Pk_cosines.py',
'custom1': 0,
'custom2': 0,
'custom3': 0,
'custom4': 0,
'custom5': 0}
#Get the unperturbed cls for comparison
cosmo = Class()
cosmo.set(params)
cosmo.compute()
clso=cosmo.lensed_cl(2508)['tt'][30:]
ell = cosmo.lensed_cl(2508)['ell'][30:]
for i in range(len(clso)):
clso[i]=ell[i]*(ell[i]+1)/(4*np.pi)*((2.726e6)**2)*clso[i]
a=np.zeros(5)
cosmo.struct_cleanup()
cosmo.empty()
dcls=np.zeros([clso.shape[0],5])
h=1e-6
for m in range(5):
a[m]=h
# Define your cosmology (what is not specified will be set to CLASS default parameters)
示例11: Class
'recfast_z_initial':z_max_pk,
#'k_step_sub':'0.01',
'k_per_decade_for_pk':k_per_decade,
'k_per_decade_for_bao':k_per_decade,
'k_min_tau0':k_min_tau0, # this value controls the minimum k value in the figure
'perturb_sampling_stepsize':'0.05',
'P_k_max_1/Mpc':P_k_max_inv_Mpc,
'compute damping scale':'yes', # needed to output and plot Silk damping scale
'gauge':'newtonian'}
###############
#
# call CLASS
#
###############
M = Class()
M.set(common_settings)
M.compute()
#
# define conformal time sampling array
#
times = M.get_current_derived_parameters(['tau_rec','conformal_age'])
tau_rec=times['tau_rec']
tau_0 = times['conformal_age']
tau1 = np.logspace(math.log10(tau_ini),math.log10(tau_rec),tau_num_early)
tau2 = np.logspace(math.log10(tau_rec),math.log10(tau_0),tau_num_late)[1:]
tau2[-1] *= 0.999 # this tiny shift avoids interpolation errors
tau = np.concatenate((tau1,tau2))
tau_num = len(tau)
#
# use table of background and thermodynamics quantitites to define some functions
示例12: TestClass
class TestClass(unittest.TestCase):
"""
Testing Class and its wrapper classy on different cosmologies
To run it, do
~] nosetest test_class.py
It will run many times Class, on different cosmological scenarios, and
everytime testing for different output possibilities (none asked, only mPk,
etc..)
"""
def setUp(self):
"""
set up data used in the tests.
setUp is called before each test function execution.
"""
self.cosmo = Class()
self.verbose = {
"input_verbose": 1,
"background_verbose": 1,
"thermodynamics_verbose": 1,
"perturbations_verbose": 1,
"transfer_verbose": 1,
"primordial_verbose": 1,
"spectra_verbose": 1,
"nonlinear_verbose": 1,
"lensing_verbose": 1,
"output_verbose": 1,
}
self.scenario = {"lensing": "yes"}
def tearDown(self):
self.cosmo.struct_cleanup()
self.cosmo.empty()
del self.scenario
@parameterized.expand(
itertools.product(
("LCDM", "Mnu", "Positive_Omega_k", "Negative_Omega_k", "Isocurvature_modes"),
(
{"output": ""},
{"output": "mPk"},
{"output": "tCl"},
{"output": "tCl pCl lCl"},
{"output": "mPk tCl lCl", "P_k_max_h/Mpc": 10},
{"output": "nCl sCl"},
{"output": "tCl pCl lCl nCl sCl"},
),
({"gauge": "newtonian"}, {"gauge": "sync"}),
({}, {"non linear": "halofit"}),
)
)
def test_wrapper_implementation(self, name, scenario, gauge, nonlinear):
"""Create a few instances based on different cosmologies"""
if name == "Mnu":
self.scenario.update({"N_ncdm": 1, "m_ncdm": 0.06})
elif name == "Positive_Omega_k":
self.scenario.update({"Omega_k": 0.01})
elif name == "Negative_Omega_k":
self.scenario.update({"Omega_k": -0.01})
elif name == "Isocurvature_modes":
self.scenario.update({"ic": "ad,nid,cdi", "c_ad_cdi": -0.5})
self.scenario.update(scenario)
if scenario != {}:
self.scenario.update(gauge)
self.scenario.update(nonlinear)
sys.stderr.write("\n\n---------------------------------\n")
sys.stderr.write("| Test case %s |\n" % name)
sys.stderr.write("---------------------------------\n")
for key, value in self.scenario.iteritems():
sys.stderr.write("%s = %s\n" % (key, value))
sys.stderr.write("\n")
setting = self.cosmo.set(dict(self.verbose.items() + self.scenario.items()))
self.assertTrue(setting, "Class failed to initialize with input dict")
cl_list = ["tCl", "lCl", "pCl", "nCl", "sCl"]
# Depending on the cases, the compute should fail or not
should_fail = True
output = self.scenario["output"].split()
for elem in output:
if elem in ["tCl", "pCl"]:
for elem2 in output:
if elem2 == "lCl":
should_fail = False
break
if not should_fail:
self.cosmo.compute()
else:
self.assertRaises(CosmoSevereError, self.cosmo.compute)
return
self.assertTrue(self.cosmo.state, "Class failed to go through all __init__ methods")
#.........這裏部分代碼省略.........
示例13: Class
import numpy as np
from classy import Class
# In[ ]:
font = {'size' : 20, 'family':'STIXGeneral'}
axislabelfontsize='large'
matplotlib.rc('font', **font)
matplotlib.mathtext.rcParams['legend.fontsize']='medium'
# In[ ]:
#Lambda CDM
LCDM = Class()
LCDM.set({'Omega_cdm':0.25,'Omega_b':0.05})
LCDM.compute()
# In[ ]:
#Einstein-de Sitter
CDM = Class()
CDM.set({'Omega_cdm':0.95,'Omega_b':0.05})
CDM.compute()
# Just to cross-check that Omega_Lambda is negligible
# (but not exactly zero because we neglected radiation)
derived = CDM.get_current_derived_parameters(['Omega0_lambda'])
print derived
示例14: classy
class classy(SlikPlugin):
"""
Plugin for CLASS.
Credit: Brent Follin, Teresa Hamill, Andy Scacco
"""
def __init__(self):
super(classy,self).__init__()
try:
from classy import Class
except ImportError:
raise Exception("Failed to import CLASS python wrapper 'Classy'.")
self.model = Class()
def __call__(self,
**kwargs):
self.model.set(**kwargs)
self.model.compute()
ell = arange(l_max_scalar+1)
self.cmb_result = {'cl_%s'%x:(self.model.lensed_cl(l_max_scalar)[x.lower()])*Tcmb**2*1e12*ell*(ell+1)/2/pi
for x in ['TT','TE','EE','BB','PP','TP']}
self.model.struct_cleanup()
self.model.empty()
return self.cmb_result
def get_bao_observables(self, z):
return {'H':self.model.Hubble(z),
'D_A':self.model.angular_distance(z),
'c':1.0,
'r_d':(self.model.get_current_derived_parameters(['rs_rec']))['rs_rec']}
示例15: Helium
# LambdaCDM parameters
'h':0.67556,
'omega_b':0.022032,
'omega_cdm':0.12038,
'A_s':2.215e-9,
'n_s':0.9619,
'tau_reio':0.0925,
# Take fixed value for primordial Helium (instead of automatic BBN adjustment)
'YHe':0.246,
# other output and precision parameters
'l_max_scalars':5000}
###############
#
# call CLASS
#
M = Class()
M.set(common_settings)
M.compute()
cl_tot = M.raw_cl(3000)
cl_lensed = M.lensed_cl(3000)
M.struct_cleanup() # clean output
M.empty() # clean input
#
M.set(common_settings) # new input
M.set({'temperature contributions':'tsw'})
M.compute()
cl_tsw = M.raw_cl(3000)
M.struct_cleanup()
M.empty()
#
M.set(common_settings)