當前位置: 首頁>>代碼示例>>Python>>正文


Python SequenceGenerator.generate方法代碼示例

本文整理匯總了Python中blocks.bricks.sequence_generators.SequenceGenerator.generate方法的典型用法代碼示例。如果您正苦於以下問題:Python SequenceGenerator.generate方法的具體用法?Python SequenceGenerator.generate怎麽用?Python SequenceGenerator.generate使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在blocks.bricks.sequence_generators.SequenceGenerator的用法示例。


在下文中一共展示了SequenceGenerator.generate方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_sequence_generator

# 需要導入模塊: from blocks.bricks.sequence_generators import SequenceGenerator [as 別名]
# 或者: from blocks.bricks.sequence_generators.SequenceGenerator import generate [as 別名]
def test_sequence_generator():
    # Disclaimer: here we only check shapes, not values.

    output_dim = 1
    dim = 20
    batch_size = 30
    n_steps = 10

    transition = GatedRecurrent(
        name="transition", activation=Tanh(), dim=dim,
        weights_init=Orthogonal())
    generator = SequenceGenerator(
        LinearReadout(readout_dim=output_dim, source_names=["states"],
                      emitter=TestEmitter(name="emitter"), name="readout"),
        transition,
        weights_init=IsotropicGaussian(0.01), biases_init=Constant(0),
        name="generator")
    generator.initialize()

    y = tensor.tensor3('y')
    mask = tensor.matrix('mask')
    costs = generator.cost(y, mask)
    assert costs.ndim == 2
    costs_val = theano.function([y, mask], [costs])(
        numpy.zeros((n_steps, batch_size, output_dim), dtype=floatX),
        numpy.ones((n_steps, batch_size), dtype=floatX))[0]
    assert costs_val.shape == (n_steps, batch_size)

    states, outputs, costs = [variable.eval() for variable in
                              generator.generate(
                                  iterate=True, batch_size=batch_size,
                                  n_steps=n_steps)]
    assert states.shape == (n_steps, batch_size, dim)
    assert outputs.shape == (n_steps, batch_size, output_dim)
    assert costs.shape == (n_steps, batch_size)
開發者ID:madisonmay,項目名稱:blocks,代碼行數:37,代碼來源:test_sequence_generators.py

示例2: test_integer_sequence_generator

# 需要導入模塊: from blocks.bricks.sequence_generators import SequenceGenerator [as 別名]
# 或者: from blocks.bricks.sequence_generators.SequenceGenerator import generate [as 別名]
def test_integer_sequence_generator():
    # Disclaimer: here we only check shapes, not values.

    readout_dim = 5
    feedback_dim = 3
    dim = 20
    batch_size = 30
    n_steps = 10

    transition = GatedRecurrent(
        name="transition", activation=Tanh(), dim=dim,
        weights_init=Orthogonal())
    generator = SequenceGenerator(
        LinearReadout(readout_dim=readout_dim, source_names=["states"],
                      emitter=SoftmaxEmitter(name="emitter"),
                      feedbacker=LookupFeedback(readout_dim, feedback_dim),
                      name="readout"),
        transition,
        weights_init=IsotropicGaussian(0.01), biases_init=Constant(0),
        name="generator")
    generator.initialize()

    y = tensor.lmatrix('y')
    mask = tensor.matrix('mask')
    costs = generator.cost(y, mask)
    assert costs.ndim == 2
    costs_val = theano.function([y, mask], [costs])(
        numpy.zeros((n_steps, batch_size), dtype='int64'),
        numpy.ones((n_steps, batch_size), dtype=floatX))[0]
    assert costs_val.shape == (n_steps, batch_size)

    states, outputs, costs = generator.generate(
        iterate=True, batch_size=batch_size, n_steps=n_steps)
    states_val, outputs_val, costs_val = theano.function(
        [], [states, outputs, costs],
        updates=costs.owner.inputs[0].owner.tag.updates)()
    assert states_val.shape == (n_steps, batch_size, dim)
    assert outputs_val.shape == (n_steps, batch_size)
    assert outputs_val.dtype == 'int64'
    assert costs_val.shape == (n_steps, batch_size)
開發者ID:madisonmay,項目名稱:blocks,代碼行數:42,代碼來源:test_sequence_generators.py

示例3: PyramidLayer

# 需要導入模塊: from blocks.bricks.sequence_generators import SequenceGenerator [as 別名]
# 或者: from blocks.bricks.sequence_generators.SequenceGenerator import generate [as 別名]

#.........這裏部分代碼省略.........
		             [hidden_size_mlp_theta]*depth_theta

		activations_context = [Rectifier()]*depth_context

		dims_context = [frame_size] + [hidden_size_mlp_context]*(depth_context-1) + \
		         [context_size]

		mlp_x = MLP(activations = activations_x,
		            dims = dims_x,
		            name = "mlp_x")

		feedback = DeepTransitionFeedback(mlp = mlp_x)

		transition = [GatedRecurrent(dim=hidden_size_recurrent, 
		                   use_bias = True,
		                   name = "gru_{}".format(i) ) for i in range(depth_transition)]

		transition = RecurrentStack( transition,
		            name="transition", skip_connections = True)

		self.transition = transition

		mlp_theta = MLP( activations = activations_theta,
		             dims = dims_theta,
		             name = "mlp_theta")

		mlp_gmm = GMMMLP(mlp = mlp_theta,
		                  dim = target_size,
		                  k = k,
		                  const = 0.00001,
		                  name = "gmm_wrap")

		gmm_emitter = GMMEmitter(gmmmlp = mlp_gmm,
		  output_size = frame_size, k = k)

		source_names = [name for name in transition.apply.states if 'states' in name]

		attention = SimpleSequenceAttention(
		              state_names = source_names,
		              state_dims = [hidden_size_recurrent],
		              attended_dim = context_size,
		              name = "attention")

		#ipdb.set_trace()
		# Verify source names
		readout = Readout(
		    readout_dim = hidden_size_recurrent,
		    source_names =source_names + ['feedback'] + ['glimpses'],
		    emitter=gmm_emitter,
		    feedback_brick = feedback,
		    name="readout")

		self.generator = SequenceGenerator(readout=readout, 
		                              transition=transition,
		                              attention = attention,
		                              name = "generator")

		self.mlp_context = MLP(activations = activations_context,
		                  dims = dims_context)

		self.children = [self.generator, self.mlp_context]
		self.final_states = []
	

    def monitoring_vars(self, cg):

        readout = self.generator.readout
        readouts = VariableFilter( applications = [readout.readout],
            name_regex = "output")(cg.variables)[0]

        mu, sigma, coeff = readout.emitter.components(readouts)

        min_sigma = sigma.min().copy(name="sigma_min")
        mean_sigma = sigma.mean().copy(name="sigma_mean")
        max_sigma = sigma.max().copy(name="sigma_max")

        min_mu = mu.min().copy(name="mu_min")
        mean_mu = mu.mean().copy(name="mu_mean")
        max_mu = mu.max().copy(name="mu_max")

        monitoring_vars = [mean_sigma, min_sigma,
            min_mu, max_mu, mean_mu, max_sigma]

        return monitoring_vars

    @application
    def cost(self, x, context, **kwargs):
        cost_matrix = self.generator.cost_matrix(
                x, attended=self.mlp_context.apply(context),
                **kwargs)

        return cost_matrix.mean()

    @application
    def generate(context):
        return self.generator.generate(
          attended = self.mlp_context.apply(context),
          n_steps = context.shape[0],
          batch_size = context.shape[1],
          iterate = True)
開發者ID:anirudh9119,項目名稱:SpeechSyn,代碼行數:104,代碼來源:model.py

示例4: function

# 需要導入模塊: from blocks.bricks.sequence_generators import SequenceGenerator [as 別名]
# 或者: from blocks.bricks.sequence_generators.SequenceGenerator import generate [as 別名]
	if '/generator/readout/emitter/mlp/' in k:
		v = parameters2.pop(k)
		parameters2[k.replace('/generator/readout/emitter/mlp/',
							  '/generator/readout/emitter/gmm_emitter/gmmmlp/mlp/') ] = v

model.set_parameter_values(parameters2)

# import ipdb
# ipdb.set_trace()

#print function([f0, sp, voiced], cost_matrix, updates = extra_updates)(x_tr[0],x_tr[1],x_tr[2])

#generator.generate(n_steps=steps, batch_size=n_samples, iterate=True, **states)

#states = {}
sample = ComputationGraph(generator.generate(n_steps=steps, 
    batch_size=n_samples, iterate=True))
sample_fn = sample.get_theano_function()

outputs_bp = sample_fn()[-2]

for this_sample in range(n_samples):
	print "Iteration: ", this_sample
	outputs = outputs_bp

	sampled_f0 = outputs[:,:,-2]
	sampled_voiced = outputs[:,:,-1]

	print sampled_voiced.mean()
	print sampled_f0.max(), sampled_f0.min()

	outputs = outputs[:,:,:-2]
開發者ID:anirudh9119,項目名稱:parrot,代碼行數:34,代碼來源:sample_sp_and_f0.py

示例5: Decoder

# 需要導入模塊: from blocks.bricks.sequence_generators import SequenceGenerator [as 別名]
# 或者: from blocks.bricks.sequence_generators.SequenceGenerator import generate [as 別名]
class Decoder(Initializable):
    def __init__(self, vocab_size, embedding_dim, state_dim,
                 representation_dim, **kwargs):
        super(Decoder, self).__init__(**kwargs)
        self.vocab_size = vocab_size
        self.embedding_dim = embedding_dim
        self.state_dim = state_dim
        self.representation_dim = representation_dim

        self.transition = GRUInitialState(
            attended_dim=state_dim, dim=state_dim,
            activation=Tanh(), name='decoder')
        self.attention = SequenceContentAttention(
            state_names=self.transition.apply.states,
            attended_dim=representation_dim,
            match_dim=state_dim, name="attention")

        readout = Readout(
            source_names=['states', 'feedback', self.attention.take_glimpses.outputs[0]],
            readout_dim=self.vocab_size,
            emitter=SoftmaxEmitter(initial_output=-1),
            feedback_brick=LookupFeedbackWMT15(vocab_size, embedding_dim),
            post_merge=InitializableFeedforwardSequence(
                [Bias(dim=state_dim, name='maxout_bias').apply,
                 Maxout(num_pieces=2, name='maxout').apply,
                 Linear(input_dim=state_dim / 2, output_dim=embedding_dim,
                        use_bias=False, name='softmax0').apply,
                 Linear(input_dim=embedding_dim, name='softmax1').apply]),
            merged_dim=state_dim)

        self.sequence_generator = SequenceGenerator(
            readout=readout,
            transition=self.transition,
            attention=self.attention,
            fork=Fork([name for name in self.transition.apply.sequences
                       if name != 'mask'], prototype=Linear())
        )

        self.children = [self.sequence_generator]

    @application(inputs=['representation', 'source_sentence_mask',
                         'target_sentence_mask', 'target_sentence'],
                 outputs=['cost'])
    def cost(self, representation, source_sentence_mask,
             target_sentence, target_sentence_mask):

        source_sentence_mask = source_sentence_mask.T
        target_sentence = target_sentence.T
        target_sentence_mask = target_sentence_mask.T

        # Get the cost matrix
        cost = self.sequence_generator.cost_matrix(
                    **{'mask': target_sentence_mask,
                       'outputs': target_sentence,
                       'attended': representation,
                       'attended_mask': source_sentence_mask}
        )

        return (cost * target_sentence_mask).sum() / target_sentence_mask.shape[1]

    @application
    def generate(self, source_sentence, representation):
        return self.sequence_generator.generate(
            n_steps=2 * source_sentence.shape[1],
            batch_size=source_sentence.shape[0],
            attended=representation,
            attended_mask=tensor.ones(source_sentence.shape).T)
開發者ID:rizar,項目名稱:NMT,代碼行數:69,代碼來源:model.py

示例6: ComputationGraph

# 需要導入模塊: from blocks.bricks.sequence_generators import SequenceGenerator [as 別名]
# 或者: from blocks.bricks.sequence_generators.SequenceGenerator import generate [as 別名]
cg = ComputationGraph(cost)
model = Model(cost)

transition_matrix = VariableFilter(
            theano_name_regex = "state_to_state")(cg.parameters)
for matr in transition_matrix:
    matr.set_value(0.98*np.eye(hidden_size_recurrent, dtype = floatX))

readouts = VariableFilter( applications = [generator.readout.readout],
    name_regex = "output")(cg.variables)[0]

mean, sigma, corr, weight, penup = emitter.components(readouts)

emit = generator.generate(
  n_steps = 400,
  batch_size = 8,
  iterate = True
  )[-2]

#ipdb.set_trace()

function([x, x_mask], cost)(x_tr[0],x_tr[1])
emit_fn = ComputationGraph(emit).get_theano_function()
emit_fn()

min_sigma = sigma.min(axis=(0,2)).copy(name="sigma_min")
mean_sigma = sigma.mean(axis=(0,2)).copy(name="sigma_mean")
max_sigma = sigma.max(axis=(0,2)).copy(name="sigma_max")

min_mean = mean.min(axis=(0,2)).copy(name="mu_min")
mean_mean = mean.mean(axis=(0,2)).copy(name="mu_mean")
開發者ID:anirudh9119,項目名稱:scribe,代碼行數:33,代碼來源:scribe.py

示例7: ComputationGraph

# 需要導入模塊: from blocks.bricks.sequence_generators import SequenceGenerator [as 別名]
# 或者: from blocks.bricks.sequence_generators.SequenceGenerator import generate [as 別名]
generator.transition.push_initialization_config()

generator.initialize()

##############
# Test model
##############

cost_matrix = generator.cost_matrix(x,
        attended = mlp_context.apply(context))
cost = cost_matrix.mean()
cost.name = "nll"

emit = generator.generate(
  attended = mlp_context.apply(context),
  n_steps = context.shape[0],
  batch_size = context.shape[1],
  iterate = True
  )[-4]

cg = ComputationGraph(cost)
model = Model(cost)

#################
# Algorithm
#################

n_batches = 139#139*16

algorithm = GradientDescent(
    cost=cost, parameters=cg.parameters,
    step_rule=CompositeRule([StepClipping(10.0), Adam(lr)]))
開發者ID:donghyunlee,項目名稱:play,代碼行數:34,代碼來源:deep_l3.py

示例8: main

# 需要導入模塊: from blocks.bricks.sequence_generators import SequenceGenerator [as 別名]
# 或者: from blocks.bricks.sequence_generators.SequenceGenerator import generate [as 別名]
def main():
    logging.basicConfig(
        level=logging.DEBUG,
        format="%(asctime)s: %(name)s: %(levelname)s: %(message)s")

    parser = argparse.ArgumentParser(
        "Case study of language modeling with RNN",
        formatter_class=argparse.ArgumentDefaultsHelpFormatter)
    parser.add_argument(
        "mode", choices=["train", "sample"],
        help="The mode to run. Use `train` to train a new model"
             " and `sample` to sample a sequence generated by an"
             " existing one.")
    parser.add_argument(
        "prefix", default="sine",
        help="The prefix for model, timing and state files")
    parser.add_argument(
        "state", nargs="?", default="",
        help="Changes to Groundhog state")
    parser.add_argument("--path", help="Path to a language dataset")
    parser.add_argument("--dict", help="Path to the dataset dictionary")
    parser.add_argument("--restart", help="Start anew")
    parser.add_argument(
        "--reset", action="store_true", default=False,
        help="Reset the hidden state between batches")
    parser.add_argument(
        "--steps", type=int, default=100,
        help="Number of steps to plot for the 'sample' mode"
             " OR training sequence length for the 'train' mode.")
    args = parser.parse_args()
    logger.debug("Args:\n" + str(args))

    dim = 200
    num_chars = 50

    transition = GatedRecurrent(
        name="transition", activation=Tanh(), dim=dim,
        weights_init=Orthogonal())
    generator = SequenceGenerator(
        LinearReadout(readout_dim=num_chars, source_names=["states"],
                      emitter=SoftmaxEmitter(name="emitter"),
                      feedbacker=LookupFeedback(
                          num_chars, dim, name='feedback'),
                      name="readout"),
        transition,
        weights_init=IsotropicGaussian(0.01), biases_init=Constant(0),
        name="generator")
    generator.allocate()
    logger.debug("Parameters:\n" +
                 pprint.pformat(
                     [(key, value.get_value().shape) for key, value
                      in Selector(generator).get_params().items()],
                     width=120))

    if args.mode == "train":
        batch_size = 1
        seq_len = args.steps

        generator.initialize()

        # Build cost computation graph that uses the saved hidden states.
        # An issue: for Groundhog this is completely transparent, that's
        # why it does not carry the hidden state over the period when
        # validation in done. We should find a way to fix in the future.
        x = tensor.lmatrix('x')
        init_states = shared_floatx_zeros((batch_size, dim),
                                          name='init_states')
        reset = tensor.scalar('reset')
        cost = ComputationGraph(
            generator.cost(x, states=init_states * reset).sum())
        # TODO: better search routine
        states = [v for v in cost.variables
                  if hasattr(v.tag, 'application_call')
                  and v.tag.application_call.brick == generator.transition
                  and (v.tag.application_call.application ==
                       generator.transition.apply)
                  and v.tag.role == VariableRole.OUTPUT
                  and v.tag.name == 'states']
        assert len(states) == 1
        states = states[0]

        gh_model = GroundhogModel(generator, cost)
        gh_model.properties.append(
            ('bpc', cost.outputs[0] * numpy.log(2) / seq_len))
        gh_model.properties.append(('mean_init_state', init_states.mean()))
        gh_model.properties.append(('reset', reset))
        if not args.reset:
            gh_model.updates.append((init_states, states[-1]))

        state = GroundhogState(args.prefix, batch_size,
                               learning_rate=0.0001).as_dict()
        changes = eval("dict({})".format(args.state))
        state.update(changes)

        def output_format(x, y, reset):
            return dict(x=x[:, None], reset=reset)
        train, valid, test = [
            LMIterator(batch_size=batch_size,
                       use_infinite_loop=mode == 'train',
                       path=args.path,
#.........這裏部分代碼省略.........
開發者ID:madisonmay,項目名稱:blocks,代碼行數:103,代碼來源:language.py

示例9: ComputationGraph

# 需要導入模塊: from blocks.bricks.sequence_generators import SequenceGenerator [as 別名]
# 或者: from blocks.bricks.sequence_generators.SequenceGenerator import generate [as 別名]
cost = cost_matrix.sum(axis=0).mean()
cost.name = "nll"

cg = ComputationGraph(cost)
model = Model(cost)

transition_matrix = VariableFilter(theano_name_regex="state_to_state")(cg.parameters)
for matr in transition_matrix:
    matr.set_value(0.98 * np.eye(hidden_size_recurrent, dtype=floatX))

readouts = VariableFilter(applications=[generator.readout.readout], name_regex="output")(cg.variables)[0]

mean, sigma, corr, weight, penup = emitter.components(readouts)

emit = generator.generate(
    n_steps=400, iterate=True, attended=embed, attended_mask=context_mask, batch_size=embed.shape[1]
)[-4]

function([x, x_mask, context, context_mask], cost)(x_tr[0], x_tr[1], x_tr[2], x_tr[3])
emit_fn = ComputationGraph(emit).get_theano_function()
emit_fn(x_tr[3], x_tr[2])[0].shape

min_sigma = sigma.min(axis=(0, 2)).copy(name="sigma_min")
mean_sigma = sigma.mean(axis=(0, 2)).copy(name="sigma_mean")
max_sigma = sigma.max(axis=(0, 2)).copy(name="sigma_max")

min_mean = mean.min(axis=(0, 2)).copy(name="mu_min")
mean_mean = mean.mean(axis=(0, 2)).copy(name="mu_mean")
max_mean = mean.max(axis=(0, 2)).copy(name="mu_max")

min_corr = corr.min().copy(name="corr_min")
開發者ID:anirudh9119,項目名稱:scribe,代碼行數:33,代碼來源:conditional_scribe.py

示例10: test_sequence_generator_with_lm

# 需要導入模塊: from blocks.bricks.sequence_generators import SequenceGenerator [as 別名]
# 或者: from blocks.bricks.sequence_generators.SequenceGenerator import generate [as 別名]
def test_sequence_generator_with_lm():
    floatX = theano.config.floatX
    rng = numpy.random.RandomState(1234)

    readout_dim = 5
    feedback_dim = 3
    dim = 20
    batch_size = 30
    n_steps = 10

    transition = GatedRecurrent(dim=dim, activation=Tanh(),
                                weights_init=Orthogonal())
    language_model = SequenceGenerator(
        Readout(readout_dim=readout_dim, source_names=["states"],
                emitter=SoftmaxEmitter(theano_seed=1234),
                feedback_brick=LookupFeedback(readout_dim, dim,
                                              name='feedback')),
        SimpleRecurrent(dim, Tanh()),
        name='language_model')
    generator = SequenceGenerator(
        Readout(readout_dim=readout_dim, source_names=["states", "lm_states"],
                emitter=SoftmaxEmitter(theano_seed=1234),
                feedback_brick=LookupFeedback(readout_dim,
                                              feedback_dim)),
        transition,
        language_model=language_model,
        weights_init=IsotropicGaussian(0.1), biases_init=Constant(0),
        seed=1234)
    generator.initialize()

    # Test 'cost_matrix' method
    y = tensor.lmatrix('y')
    y.tag.test_value = numpy.zeros((15, batch_size), dtype='int64')
    mask = tensor.matrix('mask')
    mask.tag.test_value = numpy.ones((15, batch_size))

    costs = generator.cost_matrix(y, mask)
    assert costs.ndim == 2
    costs_fun = theano.function([y, mask], [costs])
    y_test = rng.randint(readout_dim, size=(n_steps, batch_size))
    m_test = numpy.ones((n_steps, batch_size), dtype=floatX)
    costs_val = costs_fun(y_test, m_test)[0]
    assert costs_val.shape == (n_steps, batch_size)
    assert_allclose(costs_val.sum(), 483.153, rtol=1e-5)

    # Test 'cost' method
    cost = generator.cost(y, mask)
    assert cost.ndim == 0
    cost_val = theano.function([y, mask], cost)(y_test, m_test)
    assert_allclose(cost_val, 16.105, rtol=1e-5)

    # Test 'AUXILIARY' variable 'per_sequence_element' in 'cost' method
    cg = ComputationGraph([cost])
    var_filter = VariableFilter(roles=[AUXILIARY])
    aux_var_name = '_'.join([generator.name, generator.cost.name,
                             'per_sequence_element'])
    cost_per_el = [el for el in var_filter(cg.variables)
                   if el.name == aux_var_name][0]
    assert cost_per_el.ndim == 0
    cost_per_el_val = theano.function([y, mask], [cost_per_el])(y_test, m_test)
    assert_allclose(cost_per_el_val, 1.61051, rtol=1e-5)

    # Test generate
    states, outputs, lm_states, costs = generator.generate(
        iterate=True, batch_size=batch_size, n_steps=n_steps)
    cg = ComputationGraph([states, outputs, costs])
    states_val, outputs_val, costs_val = theano.function(
        [], [states, outputs, costs],
        updates=cg.updates)()
    assert states_val.shape == (n_steps, batch_size, dim)
    assert outputs_val.shape == (n_steps, batch_size)
    assert outputs_val.dtype == 'int64'
    assert costs_val.shape == (n_steps, batch_size)
    assert_allclose(states_val.sum(), -4.88367, rtol=1e-5)
    assert_allclose(costs_val.sum(), 486.681, rtol=1e-5)
    assert outputs_val.sum() == 627

    # Test masks agnostic results of cost
    cost1 = costs_fun([[1], [2]], [[1], [1]])[0]
    cost2 = costs_fun([[3, 1], [4, 2], [2, 0]],
                      [[1, 1], [1, 1], [1, 0]])[0]
    assert_allclose(cost1.sum(), cost2[:, 1].sum(), rtol=1e-5)
開發者ID:DingKe,項目名稱:attention-lvcsr,代碼行數:84,代碼來源:test_sequence_generators.py

示例11: test_attention_transition

# 需要導入模塊: from blocks.bricks.sequence_generators import SequenceGenerator [as 別名]
# 或者: from blocks.bricks.sequence_generators.SequenceGenerator import generate [as 別名]
def test_attention_transition():
    inp_dim = 2
    inp_len = 10
    attended_dim = 3
    attended_len = 11
    batch_size = 4
    n_steps = 30

    transition = TestTransition(dim=inp_dim, attended_dim=attended_dim,
                                name="transition")
    attention = SequenceContentAttention(transition.apply.states,
                                         match_dim=inp_dim, name="attention")
    mixer = Mixer([name for name in transition.apply.sequences
                   if name != 'mask'],
                  attention.take_look.outputs[0],
                  name="mixer")
    att_trans = AttentionTransition(transition, attention, mixer,
                                    name="att_trans")
    att_trans.weights_init = IsotropicGaussian(0.01)
    att_trans.biases_init = Constant(0)
    att_trans.initialize()

    attended = tensor.tensor3("attended")
    attended_mask = tensor.matrix("attended_mask")
    inputs = tensor.tensor3("inputs")
    inputs_mask = tensor.matrix("inputs_mask")
    states, glimpses, weights = att_trans.apply(
        input_=inputs, mask=inputs_mask,
        attended=attended, attended_mask=attended_mask)
    assert states.ndim == 3
    assert glimpses.ndim == 3
    assert weights.ndim == 3

    input_vals = numpy.zeros((inp_len, batch_size, inp_dim),
                             dtype=floatX)
    input_mask_vals = numpy.ones((inp_len, batch_size),
                                 dtype=floatX)
    attended_vals = numpy.zeros((attended_len, batch_size, attended_dim),
                                dtype=floatX)
    attended_mask_vals = numpy.ones((attended_len, batch_size),
                                    dtype=floatX)

    func = theano.function([inputs, inputs_mask, attended, attended_mask],
                           [states, glimpses, weights])
    states_vals, glimpses_vals, weight_vals = func(
        input_vals, input_mask_vals,
        attended_vals, attended_mask_vals)

    assert states_vals.shape == input_vals.shape
    assert glimpses_vals.shape == (inp_len, batch_size, attended_dim)
    assert weight_vals.shape == (inp_len, batch_size, attended_len)

    # Test SequenceGenerator using AttentionTransition
    generator = SequenceGenerator(
        LinearReadout(readout_dim=inp_dim, source_names=["state"],
                      emitter=TestEmitter(name="emitter"),
                      name="readout"),
        transition=transition,
        attention=attention,
        weights_init=IsotropicGaussian(0.01), biases_init=Constant(0),
        name="generator")

    outputs = tensor.tensor3('outputs')
    costs = generator.cost(outputs, attended=attended,
                           attended_mask=attended_mask)
    costs_vals = costs.eval({outputs: input_vals,
                            attended: attended_vals,
                            attended_mask: attended_mask_vals})
    assert costs_vals.shape == (inp_len, batch_size)

    results = (
        generator.generate(n_steps=n_steps, batch_size=attended.shape[1],
                           attended=attended, attended_mask=attended_mask))
    assert len(results) == 5
    states_vals, outputs_vals, glimpses_vals, weights_vals, costs_vals = (
        theano.function([attended, attended_mask], results)
        (attended_vals, attended_mask_vals))
    assert states_vals.shape == (n_steps, batch_size, inp_dim)
    assert states_vals.shape == outputs_vals.shape
    assert glimpses_vals.shape == (n_steps, batch_size, attended_dim)
    assert weights_vals.shape == (n_steps, batch_size, attended_len)
    assert costs_vals.shape == (n_steps, batch_size)
開發者ID:madisonmay,項目名稱:blocks,代碼行數:84,代碼來源:test_sequence_generators.py

示例12: main

# 需要導入模塊: from blocks.bricks.sequence_generators import SequenceGenerator [as 別名]
# 或者: from blocks.bricks.sequence_generators.SequenceGenerator import generate [as 別名]

#.........這裏部分代碼省略.........
			Linear(input_dim=config['hidden_tgt'], 
				output_dim=config['embed_tgt'],
				use_bias=False, 
				name='softmax0').apply,
			Linear(input_dim=config['embed_tgt'], 
				name='softmax1').apply]),
		merged_dim=config['hidden_tgt'])

	decoder = SequenceGenerator(
		readout=readout, 
		transition=transition, 
		attention=attention, 
		weights_init=IsotropicGaussian(0.01), 
		biases_init=Constant(0),
		name="generator",
		fork=Fork(
			[name for name in transition.apply.sequences if name != 'mask'], 
			prototype=Linear()),
		add_contexts=True)
	decoder.transition.weights_init = Orthogonal()

	#printchildren(encoder, 1)
	# Initialize model
	logger.info('Initializing model')
	embedder.initialize()
	transformer.initialize()
	encoder.initialize()
	decoder.initialize()
	
	# Apply model 
	embedded = embedder.apply(source_sentence)
	tansformed = transformer.apply(embedded)
	encoded = encoder.apply(tansformed)[0]
	generated = decoder.generate(
		n_steps=2*source_sentence.shape[1], 
		batch_size=source_sentence.shape[0], 
		attended = encoded.dimshuffle(1,0,2), 
		attended_mask=tensor.ones(source_sentence.shape).T
		)
	print 'Generated: ', generated
	# generator_generate_outputs
	#samples = generated[1] # For GRU 
	samples = generated[2] # For LSTM
	samples.name = 'samples'
	#samples_cost = generated[4] # For GRU 
	samples_cost = generated[5] # For LSTM
	samples_cost = 'sampling_cost'
	cost = decoder.cost(
		mask = target_sentence_mask.T, 
		outputs = target_sentence.T, 
		attended = encoded.dimshuffle(1,0,2), 
		attended_mask = source_sentence_mask.T)
	cost.name = 'target_cost'
	cost.tag.aggregation_scheme = TakeLast(cost)
	model = Model(cost)
	
	logger.info('Creating computational graph')
	cg = ComputationGraph(cost)
	
	# apply dropout for regularization
	if config['dropout'] < 1.0: # dropout is applied to the output of maxout in ghog
		logger.info('Applying dropout')
		dropout_inputs = [x for x in cg.intermediary_variables if x.name == 'maxout_apply_output']
		cg = apply_dropout(cg, dropout_inputs, config['dropout'])

	######## 
開發者ID:xlhdh,項目名稱:sp2016.11-731,代碼行數:70,代碼來源:train_time.py

示例13: Identity

# 需要導入模塊: from blocks.bricks.sequence_generators import SequenceGenerator [as 別名]
# 或者: from blocks.bricks.sequence_generators.SequenceGenerator import generate [as 別名]
    post_merge = Identity(),
    merged_dim = dimension,
    name="readout")

generator = SequenceGenerator(
    readout=readout,
    transition=transition,
    fork = Fork(['inputs'], prototype=Identity()),
    weights_init = initialization.Identity(1.),
    biases_init = initialization.Constant(0.),
    name="generator")

generator.push_initialization_config()
generator.transition.transition.weights_init = initialization.Identity(2.)
generator.initialize()

results = generator.generate(n_steps=n_steps, 
            batch_size=1, iterate=True,
            return_initial_states = True)

results_cg = ComputationGraph(results)
results_tf = results_cg.get_theano_function()

generated_sequence_t = results_tf()[1]
generated_sequence_t.shape=(n_steps+1, dimension)
print generated_sequence_t
print generated_sequence



開發者ID:donghyunlee,項目名稱:play,代碼行數:29,代碼來源:bug_sequence_generator.py

示例14: NoLookupDecoder

# 需要導入模塊: from blocks.bricks.sequence_generators import SequenceGenerator [as 別名]
# 或者: from blocks.bricks.sequence_generators.SequenceGenerator import generate [as 別名]

#.........這裏部分代碼省略.........
            attention_sources (string): Defines the sources used by the 
                                        attention model 's' for decoder
                                        states, 'f' for feedback
            readout_sources (string): Defines the sources used in the 
                                      readout network. 's' for decoder
                                      states, 'f' for feedback, 'a' for
                                      attention (context vector)
            memory (string): Which external memory should be used
                             (cf.  ``_initialize_attention``)
            memory_size (int): Size of the external memory structure
            seq_len (int): Maximum sentence length
            init_strategy (string): How to initialize the RNN state
                                    (cf.  ``GRUInitialState``)
            theano_seed: Random seed
        """
        super(NoLookupDecoder, self).__init__(**kwargs)
        self.vocab_size = vocab_size
        self.embedding_dim = embedding_dim
        self.state_dim = state_dim
        self.representation_dim = representation_dim
        self.theano_seed = theano_seed

        # Initialize gru with special initial state
        self.transition = GRUInitialState(
            attended_dim=state_dim,
            init_strategy=init_strategy,
            dim=state_dim,
            activation=Tanh(),
            name='decoder')

        # Initialize the attention mechanism
        att_dim = att_dim if att_dim > 0 else state_dim
        self.attention,src_names = _initialize_attention(attention_strategy,
                                                         seq_len, 
                                                         self.transition, 
                                                         representation_dim, 
                                                         att_dim,
                                                         attention_sources,
                                                         readout_sources,
                                                         memory,
                                                         memory_size)

        # Initialize the readout, note that SoftmaxEmitter emits -1 for
        # initial outputs which is used by LookupFeedBackWMT15
        maxout_dim = maxout_dim if maxout_dim > 0 else state_dim
        readout = Readout(
            source_names=src_names,
            readout_dim=embedding_dim,
            emitter=NoLookupEmitter(initial_output=-1,
                                    readout_dim=embedding_dim,
                                    cost_brick=SquaredError()),
            #                        cost_brick=CategoricalCrossEntropy()),
            feedback_brick=TrivialFeedback(output_dim=embedding_dim),
            post_merge=InitializableFeedforwardSequence(
                [Bias(dim=maxout_dim, name='maxout_bias').apply,
                 Maxout(num_pieces=2, name='maxout').apply,
                 Linear(input_dim=maxout_dim / 2, output_dim=embedding_dim,
                        use_bias=False, name='softmax0').apply,
                 Logistic(name='softmax1').apply]),
            merged_dim=maxout_dim)

        # Build sequence generator accordingly
        self.sequence_generator = SequenceGenerator(
            readout=readout,
            transition=self.transition,
            attention=self.attention,
            fork=Fork([name for name in self.transition.apply.sequences
                       if name != 'mask'], prototype=Linear())
        )

        self.children = [self.sequence_generator]

    @application(inputs=['representation', 'representation_mask',
                         'target_sentence_mask', 'target_sentence'],
                 outputs=['cost'])
    def cost(self, representation, representation_mask,
             target_sentence, target_sentence_mask):

        target_sentence = target_sentence.T
        target_sentence_mask = target_sentence_mask.T

        # Get the cost matrix
        cost = self.sequence_generator.cost_matrix(**{
            'mask': target_sentence_mask,
            'outputs': target_sentence,
            'attended': representation,
            'attended_mask': representation_mask}
        )

        return (cost * target_sentence_mask).sum() / \
            target_sentence_mask.shape[1]

    @application
    def generate(self, source_shape, representation, **kwargs):
        return self.sequence_generator.generate(
            n_steps=2 * source_shape[1],
            batch_size=source_shape[0],
            attended=representation,
            attended_mask=tensor.ones(source_shape).T,
            **kwargs)        
開發者ID:ucam-smt,項目名稱:sgnmt,代碼行數:104,代碼來源:decoder.py

示例15: main

# 需要導入模塊: from blocks.bricks.sequence_generators import SequenceGenerator [as 別名]
# 或者: from blocks.bricks.sequence_generators.SequenceGenerator import generate [as 別名]
def main():
    logging.basicConfig(
        level=logging.DEBUG,
        format="%(asctime)s: %(name)s: %(levelname)s: %(message)s")

    parser = argparse.ArgumentParser(
        "Case study of generating a Markov chain with RNN.",
        formatter_class=argparse.ArgumentDefaultsHelpFormatter)
    parser.add_argument(
        "mode", choices=["train", "sample"],
        help="The mode to run. Use `train` to train a new model"
             " and `sample` to sample a sequence generated by an"
             " existing one.")
    parser.add_argument(
        "save_path", default="sine",
        help="The part to save PyLearn2 model")
    parser.add_argument(
        "--steps", type=int, default=100,
        help="Number of steps to plot")
    parser.add_argument(
        "--reset", action="store_true", default=False,
        help="Start training from scratch")
    args = parser.parse_args()

    num_states = ChainDataset.num_states

    if args.mode == "train":
        # Experiment configuration
        rng = numpy.random.RandomState(1)
        batch_size = 50
        seq_len = 100
        dim = 10
        feedback_dim = 8

        # Build the bricks and initialize them
        transition = GatedRecurrent(name="transition", activation=Tanh(),
                                    dim=dim)
        generator = SequenceGenerator(
            LinearReadout(readout_dim=num_states, source_names=["states"],
                          emitter=SoftmaxEmitter(name="emitter"),
                          feedbacker=LookupFeedback(
                              num_states, feedback_dim, name='feedback'),
                          name="readout"),
            transition,
            weights_init=IsotropicGaussian(0.01), biases_init=Constant(0),
            name="generator")
        generator.push_initialization_config()
        transition.weights_init = Orthogonal()
        generator.initialize()

        logger.debug("Parameters:\n" +
                     pprint.pformat(
                         [(key, value.get_value().shape) for key, value
                          in Selector(generator).get_params().items()],
                         width=120))
        logger.debug("Markov chain entropy: {}".format(
            ChainDataset.entropy))
        logger.debug("Expected min error: {}".format(
            -ChainDataset.entropy * seq_len * batch_size))

        if os.path.isfile(args.save_path) and not args.reset:
            model = Pylearn2Model.load(args.save_path)
        else:
            model = Pylearn2Model(generator)

        # Build the cost computation graph.
        # Note: would be probably nicer to make cost part of the model.
        x = tensor.ltensor3('x')
        cost = Pylearn2Cost(model.brick.cost(x[:, :, 0]).sum())

        dataset = ChainDataset(rng, seq_len)
        sgd = SGD(learning_rate=0.0001, cost=cost,
                  batch_size=batch_size, batches_per_iter=10,
                  monitoring_dataset=dataset,
                  monitoring_batch_size=batch_size,
                  monitoring_batches=1,
                  learning_rule=Pylearn2LearningRule(
                      SGDLearningRule(),
                      dict(training_objective=cost.cost)))
        train = Pylearn2Train(dataset, model, algorithm=sgd,
                              save_path=args.save_path, save_freq=10)
        train.main_loop()
    elif args.mode == "sample":
        model = Pylearn2Model.load(args.save_path)
        generator = model.brick

        sample = ComputationGraph(generator.generate(
            n_steps=args.steps, batch_size=1, iterate=True)).function()

        states, outputs, costs = [data[:, 0] for data in sample()]

        numpy.set_printoptions(precision=3, suppress=True)
        print("Generation cost:\n{}".format(costs.sum()))

        freqs = numpy.bincount(outputs).astype(floatX)
        freqs /= freqs.sum()
        print("Frequencies:\n {} vs {}".format(freqs,
                                               ChainDataset.equilibrium))

        trans_freqs = numpy.zeros((num_states, num_states), dtype=floatX)
#.........這裏部分代碼省略.........
開發者ID:sherjilozair,項目名稱:blocks,代碼行數:103,代碼來源:markov_chain.py


注:本文中的blocks.bricks.sequence_generators.SequenceGenerator.generate方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。