本文整理匯總了Python中blocks.bricks.sequence_generators.SequenceGenerator類的典型用法代碼示例。如果您正苦於以下問題:Python SequenceGenerator類的具體用法?Python SequenceGenerator怎麽用?Python SequenceGenerator使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。
在下文中一共展示了SequenceGenerator類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_sequence_generator
def test_sequence_generator():
# Disclaimer: here we only check shapes, not values.
output_dim = 1
dim = 20
batch_size = 30
n_steps = 10
transition = GatedRecurrent(
name="transition", activation=Tanh(), dim=dim,
weights_init=Orthogonal())
generator = SequenceGenerator(
LinearReadout(readout_dim=output_dim, source_names=["states"],
emitter=TestEmitter(name="emitter"), name="readout"),
transition,
weights_init=IsotropicGaussian(0.01), biases_init=Constant(0),
name="generator")
generator.initialize()
y = tensor.tensor3('y')
mask = tensor.matrix('mask')
costs = generator.cost(y, mask)
assert costs.ndim == 2
costs_val = theano.function([y, mask], [costs])(
numpy.zeros((n_steps, batch_size, output_dim), dtype=floatX),
numpy.ones((n_steps, batch_size), dtype=floatX))[0]
assert costs_val.shape == (n_steps, batch_size)
states, outputs, costs = [variable.eval() for variable in
generator.generate(
iterate=True, batch_size=batch_size,
n_steps=n_steps)]
assert states.shape == (n_steps, batch_size, dim)
assert outputs.shape == (n_steps, batch_size, output_dim)
assert costs.shape == (n_steps, batch_size)
示例2: getRnnGenerator
def getRnnGenerator(vocab_size,hidden_dim,input_dim=512):
"""
"Apply" the RNN to the input x
For initializing the network, the vocab size needs to be known
Default of the hidden layer is set tot 512 like Karpathy
"""
generator = SequenceGenerator(
Readout(readout_dim = vocab_size,
source_names = ["states"], # transition.apply.states ???
emitter = SoftmaxEmitter(name="emitter"),
feedback_brick = LookupFeedback(
vocab_size,
input_dim,
name = 'feedback'
),
name = "readout"
),
MySimpleRecurrent(
name = "transition",
activation = Tanh(),
dim = hidden_dim
),
weights_init = IsotropicGaussian(0.01),
biases_init = Constant(0),
name = "generator"
)
generator.push_initialization_config()
generator.transition.weights_init = IsotropicGaussian(0.01)
generator.initialize()
return generator
示例3: test_integer_sequence_generator
def test_integer_sequence_generator():
# Disclaimer: here we only check shapes, not values.
readout_dim = 5
feedback_dim = 3
dim = 20
batch_size = 30
n_steps = 10
transition = GatedRecurrent(
name="transition", activation=Tanh(), dim=dim,
weights_init=Orthogonal())
generator = SequenceGenerator(
LinearReadout(readout_dim=readout_dim, source_names=["states"],
emitter=SoftmaxEmitter(name="emitter"),
feedbacker=LookupFeedback(readout_dim, feedback_dim),
name="readout"),
transition,
weights_init=IsotropicGaussian(0.01), biases_init=Constant(0),
name="generator")
generator.initialize()
y = tensor.lmatrix('y')
mask = tensor.matrix('mask')
costs = generator.cost(y, mask)
assert costs.ndim == 2
costs_val = theano.function([y, mask], [costs])(
numpy.zeros((n_steps, batch_size), dtype='int64'),
numpy.ones((n_steps, batch_size), dtype=floatX))[0]
assert costs_val.shape == (n_steps, batch_size)
states, outputs, costs = generator.generate(
iterate=True, batch_size=batch_size, n_steps=n_steps)
states_val, outputs_val, costs_val = theano.function(
[], [states, outputs, costs],
updates=costs.owner.inputs[0].owner.tag.updates)()
assert states_val.shape == (n_steps, batch_size, dim)
assert outputs_val.shape == (n_steps, batch_size)
assert outputs_val.dtype == 'int64'
assert costs_val.shape == (n_steps, batch_size)
示例4: test_recurrentstack_sequence_generator
def test_recurrentstack_sequence_generator():
"""Test RecurrentStack behaviour inside a SequenceGenerator.
"""
floatX = theano.config.floatX
rng = numpy.random.RandomState(1234)
output_dim = 1
dim = 20
batch_size = 30
n_steps = 10
depth=2
transitions = [LSTM(dim=dim) for _ in range(depth)]
transition = RecurrentStack(transitions,fast=True,
weights_init=Constant(2),
biases_init=Constant(0))
generator = SequenceGenerator(
Readout(readout_dim=output_dim, source_names=["states_%d"%(depth-1)],
emitter=TestEmitter()),
transition,
weights_init=IsotropicGaussian(0.1), biases_init=Constant(0.0),
seed=1234)
generator.initialize()
y = tensor.tensor3('y')
cost = generator.cost(y)
# Check that all states can be accessed and not just the state connected
# to readout.
cg = ComputationGraph(cost)
from blocks.roles import INPUT, OUTPUT
dropout_target = VariableFilter(roles=[INNER_OUTPUT],
# bricks=transitions,
# name_regex='*'
)(cg.variables)
assert_equal(len(dropout_target), depth)
示例5: __init__
def __init__(self, vocab_size, embedding_dim, state_dim,
representation_dim, theano_seed=None, **kwargs):
super(Decoder, self).__init__(**kwargs)
self.vocab_size = vocab_size
self.embedding_dim = embedding_dim
self.state_dim = state_dim
self.representation_dim = representation_dim
self.theano_seed = theano_seed
# Initialize gru with special initial state
self.transition = GRUInitialState(
attended_dim=state_dim, dim=state_dim,
activation=Tanh(), name='decoder')
# Initialize the attention mechanism
self.attention = SequenceContentAttention(
state_names=self.transition.apply.states,
attended_dim=representation_dim,
match_dim=state_dim, name="attention")
# Initialize the readout, note that SoftmaxEmitter emits -1 for
# initial outputs which is used by LookupFeedBackWMT15
readout = Readout(
source_names=['states', 'feedback',
self.attention.take_glimpses.outputs[0]],
readout_dim=self.vocab_size,
emitter=SoftmaxEmitter(initial_output=-1, theano_seed=theano_seed),
feedback_brick=LookupFeedbackWMT15(vocab_size, embedding_dim),
post_merge=InitializableFeedforwardSequence(
[Bias(dim=state_dim, name='maxout_bias').apply,
Maxout(num_pieces=2, name='maxout').apply,
Linear(input_dim=state_dim / 2, output_dim=embedding_dim,
use_bias=False, name='softmax0').apply,
Linear(input_dim=embedding_dim, name='softmax1').apply]),
merged_dim=state_dim)
# Build sequence generator accordingly
self.sequence_generator = SequenceGenerator(
readout=readout,
transition=self.transition,
attention=self.attention,
fork=Fork([name for name in self.transition.apply.sequences
if name != 'mask'], prototype=Linear())
)
self.children = [self.sequence_generator]
示例6: __init__
def __init__(self, vocab_size, embedding_dim,
state_dim, theano_seed=None, **kwargs):
super(Decoder, self).__init__(**kwargs)
self.vocab_size = vocab_size
self.embedding_dim = embedding_dim
self.theano_seed = theano_seed
self.transition = GatedRecurrent(dim=state_dim,
activation=Tanh(), name='decoder')
readout = Readout(
source_names=['states'],
readout_dim=self.vocab_size,
merged_dim=state_dim)
self.sequence_generator = SequenceGenerator(
readout=readout,
transition=self.transition,
fork=Fork([name for name in self.transition.apply.sequences
if name != 'mask'], prototype=Linear()))
self.children = [self.sequence_generator]
示例7: __init__
def __init__(self, vocab_size, embedding_dim, state_dim,
representation_dim, **kwargs):
super(Decoder, self).__init__(**kwargs)
self.vocab_size = vocab_size
self.embedding_dim = embedding_dim
self.state_dim = state_dim
self.representation_dim = representation_dim
self.transition = GRUInitialState(
attended_dim=state_dim, dim=state_dim,
activation=Tanh(), name='decoder')
self.attention = SequenceContentAttention(
state_names=self.transition.apply.states,
attended_dim=representation_dim,
match_dim=state_dim, name="attention")
readout = Readout(
source_names=['states', 'feedback', self.attention.take_glimpses.outputs[0]],
readout_dim=self.vocab_size,
emitter=SoftmaxEmitter(initial_output=-1),
feedback_brick=LookupFeedbackWMT15(vocab_size, embedding_dim),
post_merge=InitializableFeedforwardSequence(
[Bias(dim=state_dim, name='maxout_bias').apply,
Maxout(num_pieces=2, name='maxout').apply,
Linear(input_dim=state_dim / 2, output_dim=embedding_dim,
use_bias=False, name='softmax0').apply,
Linear(input_dim=embedding_dim, name='softmax1').apply]),
merged_dim=state_dim,
merge_prototype=Linear(use_bias=True))
self.sequence_generator = SequenceGenerator(
readout=readout,
transition=self.transition,
attention=self.attention,
fork=Fork([name for name in self.transition.apply.sequences
if name != 'mask'], prototype=Linear())
)
self.children = [self.sequence_generator]
示例8: __init__
def __init__(self, vocab_size, embedding_dim, state_dim,
representation_dim, **kwargs):
super(Decoder, self).__init__(**kwargs)
self.vocab_size = vocab_size
self.embedding_dim = embedding_dim
self.state_dim = state_dim
self.representation_dim = representation_dim
readout = Readout(
source_names=['states', 'feedback', 'readout_context'],
readout_dim=self.vocab_size,
emitter=SoftmaxEmitter(),
feedback_brick=LookupFeedback(vocab_size, embedding_dim),
post_merge=InitializableFeedforwardSequence(
[Bias(dim=1000).apply,
Maxout(num_pieces=2).apply,
Linear(input_dim=state_dim / 2, output_dim=100,
use_bias=False).apply,
Linear(input_dim=100).apply]),
merged_dim=1000)
self.transition = GatedRecurrentWithContext(Tanh(), dim=state_dim,
name='decoder')
# Readout will apply the linear transformation to 'readout_context'
# with a Merge brick, so no need to fork it here
self.fork = Fork([name for name in
self.transition.apply.contexts +
self.transition.apply.states
if name != 'readout_context'], prototype=Linear())
self.tanh = Tanh()
self.sequence_generator = SequenceGenerator(
readout=readout, transition=self.transition,
fork_inputs=[name for name in self.transition.apply.sequences
if name != 'mask'],
)
self.children = [self.fork, self.sequence_generator, self.tanh]
示例9: build_model
def build_model(alphabet_size, config):
layers = config['lstm_layers']
dimensions = [config['lstm_dim_' + str(i)] for i in range(layers)]
uniform_width = config['lstm_init_width']
stack = []
for dim in dimensions:
stack.append(LSTM(dim=dim, use_bias=True,
weights_init = Uniform(width=uniform_width),
forget_init=Constant(1.)))
recurrent_stack = RecurrentStack(stack, name='transition')
readout = Readout(readout_dim=alphabet_size,
source_names=['states#' + str(layers - 1)],
emitter=SoftmaxEmitter(name='emitter'),
feedback_brick=LookupFeedback(alphabet_size,
feedback_dim=alphabet_size,
name='feedback'),
name='readout')
generator = SequenceGenerator(readout=readout,
transition=recurrent_stack,
weights_init=Uniform(width=uniform_width),
biases_init=Constant(0),
name='generator')
generator.push_initialization_config()
generator.initialize()
x = tensor.lmatrix('features')
mask = tensor.fmatrix('features_mask')
cost_matrix = generator.cost_matrix(x, mask=mask)
log2e = math.log(math.e, 2)
if 'batch_length' in config:
length = config['batch_length'] - config['batch_overlap']
cost = log2e * aggregation.mean(cost_matrix[:,-length:].sum(),
mask[:,-length:].sum())
else:
cost = log2e * aggregation.mean(cost_matrix[:,:].sum(),
mask[:,:].sum())
cost.name = 'bits_per_character'
return generator, cost
示例10: Decoder
class Decoder(Initializable):
def __init__(self, vocab_size, embedding_dim,
state_dim, theano_seed=None, **kwargs):
super(Decoder, self).__init__(**kwargs)
self.vocab_size = vocab_size
self.embedding_dim = embedding_dim
self.theano_seed = theano_seed
self.transition = GatedRecurrent(dim=state_dim,
activation=Tanh(), name='decoder')
readout = Readout(
source_names=['states'],
readout_dim=self.vocab_size,
merged_dim=state_dim)
self.sequence_generator = SequenceGenerator(
readout=readout,
transition=self.transition,
fork=Fork([name for name in self.transition.apply.sequences
if name != 'mask'], prototype=Linear()))
self.children = [self.sequence_generator]
@application(inputs=['representation', 'source_sentence_mask',
'target_sentence_mask', 'target_sentence'],
outputs=['cost'])
def cost(self, representation, source_sentence_mask,
target_sentence, target_sentence_mask):
source_sentence_mask = source_sentence_mask.T
target_sentence = target_sentence.T
target_sentence_mask = target_sentence_mask.T
cost = self.sequence_generator.cost_matrix(**{
'mask': target_sentence_mask,
'outputs': target_sentence})
示例11: test_sequence_generator
def test_sequence_generator():
"""Test a sequence generator with no contexts and continuous outputs.
Such sequence generators can be used to model e.g. dynamical systems.
"""
rng = numpy.random.RandomState(1234)
output_dim = 1
dim = 20
batch_size = 30
n_steps = 10
transition = SimpleRecurrent(activation=Tanh(), dim=dim,
weights_init=Orthogonal())
generator = SequenceGenerator(
Readout(readout_dim=output_dim, source_names=["states"],
emitter=TestEmitter()),
transition,
weights_init=IsotropicGaussian(0.1), biases_init=Constant(0.0),
seed=1234)
generator.initialize()
# Test 'cost_matrix' method
y = tensor.tensor3('y')
mask = tensor.matrix('mask')
costs = generator.cost_matrix(y, mask)
assert costs.ndim == 2
y_test = rng.uniform(size=(n_steps, batch_size, output_dim)).astype(floatX)
m_test = numpy.ones((n_steps, batch_size), dtype=floatX)
costs_val = theano.function([y, mask], [costs])(y_test, m_test)[0]
assert costs_val.shape == (n_steps, batch_size)
assert_allclose(costs_val.sum(), 115.593, rtol=1e-5)
# Test 'cost' method
cost = generator.cost(y, mask)
assert cost.ndim == 0
cost_val = theano.function([y, mask], [cost])(y_test, m_test)
assert_allclose(cost_val, 3.8531, rtol=1e-5)
# Test 'AUXILIARY' variable 'per_sequence_element' in 'cost' method
cg = ComputationGraph([cost])
var_filter = VariableFilter(roles=[AUXILIARY])
aux_var_name = '_'.join([generator.name, generator.cost.name,
'per_sequence_element'])
cost_per_el = [el for el in var_filter(cg.variables)
if el.name == aux_var_name][0]
assert cost_per_el.ndim == 0
cost_per_el_val = theano.function([y, mask], [cost_per_el])(y_test, m_test)
assert_allclose(cost_per_el_val, 0.38531, rtol=1e-5)
# Test 'generate' method
states, outputs, costs = [variable.eval() for variable in
generator.generate(
states=rng.uniform(
size=(batch_size, dim)).astype(floatX),
iterate=True, batch_size=batch_size,
n_steps=n_steps)]
assert states.shape == (n_steps, batch_size, dim)
assert outputs.shape == (n_steps, batch_size, output_dim)
assert costs.shape == (n_steps, batch_size)
assert_allclose(outputs.sum(), -0.33683, rtol=1e-5)
assert_allclose(states.sum(), 15.7909, rtol=1e-5)
# There is no generation cost in this case, since generation is
# deterministic
assert_allclose(costs.sum(), 0.0)
示例12: main
def main():
logging.basicConfig(
level=logging.DEBUG,
format="%(asctime)s: %(name)s: %(levelname)s: %(message)s")
parser = argparse.ArgumentParser(
"Case study of language modeling with RNN",
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument(
"mode", choices=["train", "sample"],
help="The mode to run. Use `train` to train a new model"
" and `sample` to sample a sequence generated by an"
" existing one.")
parser.add_argument(
"prefix", default="sine",
help="The prefix for model, timing and state files")
parser.add_argument(
"state", nargs="?", default="",
help="Changes to Groundhog state")
parser.add_argument("--path", help="Path to a language dataset")
parser.add_argument("--dict", help="Path to the dataset dictionary")
parser.add_argument("--restart", help="Start anew")
parser.add_argument(
"--reset", action="store_true", default=False,
help="Reset the hidden state between batches")
parser.add_argument(
"--steps", type=int, default=100,
help="Number of steps to plot for the 'sample' mode"
" OR training sequence length for the 'train' mode.")
args = parser.parse_args()
logger.debug("Args:\n" + str(args))
dim = 200
num_chars = 50
transition = GatedRecurrent(
name="transition", activation=Tanh(), dim=dim,
weights_init=Orthogonal())
generator = SequenceGenerator(
LinearReadout(readout_dim=num_chars, source_names=["states"],
emitter=SoftmaxEmitter(name="emitter"),
feedbacker=LookupFeedback(
num_chars, dim, name='feedback'),
name="readout"),
transition,
weights_init=IsotropicGaussian(0.01), biases_init=Constant(0),
name="generator")
generator.allocate()
logger.debug("Parameters:\n" +
pprint.pformat(
[(key, value.get_value().shape) for key, value
in Selector(generator).get_params().items()],
width=120))
if args.mode == "train":
batch_size = 1
seq_len = args.steps
generator.initialize()
# Build cost computation graph that uses the saved hidden states.
# An issue: for Groundhog this is completely transparent, that's
# why it does not carry the hidden state over the period when
# validation in done. We should find a way to fix in the future.
x = tensor.lmatrix('x')
init_states = shared_floatx_zeros((batch_size, dim),
name='init_states')
reset = tensor.scalar('reset')
cost = ComputationGraph(
generator.cost(x, states=init_states * reset).sum())
# TODO: better search routine
states = [v for v in cost.variables
if hasattr(v.tag, 'application_call')
and v.tag.application_call.brick == generator.transition
and (v.tag.application_call.application ==
generator.transition.apply)
and v.tag.role == VariableRole.OUTPUT
and v.tag.name == 'states']
assert len(states) == 1
states = states[0]
gh_model = GroundhogModel(generator, cost)
gh_model.properties.append(
('bpc', cost.outputs[0] * numpy.log(2) / seq_len))
gh_model.properties.append(('mean_init_state', init_states.mean()))
gh_model.properties.append(('reset', reset))
if not args.reset:
gh_model.updates.append((init_states, states[-1]))
state = GroundhogState(args.prefix, batch_size,
learning_rate=0.0001).as_dict()
changes = eval("dict({})".format(args.state))
state.update(changes)
def output_format(x, y, reset):
return dict(x=x[:, None], reset=reset)
train, valid, test = [
LMIterator(batch_size=batch_size,
use_infinite_loop=mode == 'train',
path=args.path,
#.........這裏部分代碼省略.........
示例13: test_with_attention
def test_with_attention():
"""Test a sequence generator with continuous outputs and attention."""
rng = numpy.random.RandomState(1234)
inp_dim = 2
inp_len = 10
attended_dim = 3
attended_len = 11
batch_size = 4
n_steps = 30
# For values
def rand(size):
return rng.uniform(size=size).astype(floatX)
# For masks
def generate_mask(length, batch_size):
mask = numpy.ones((length, batch_size), dtype=floatX)
# To make it look like read data
for i in range(batch_size):
mask[1 + rng.randint(0, length - 1):, i] = 0.0
return mask
output_vals = rand((inp_len, batch_size, inp_dim))
output_mask_vals = generate_mask(inp_len, batch_size)
attended_vals = rand((attended_len, batch_size, attended_dim))
attended_mask_vals = generate_mask(attended_len, batch_size)
transition = TestTransition(
dim=inp_dim, attended_dim=attended_dim, activation=Identity())
attention = SequenceContentAttention(
state_names=transition.apply.states, match_dim=inp_dim)
generator = SequenceGenerator(
Readout(
readout_dim=inp_dim,
source_names=[transition.apply.states[0],
attention.take_glimpses.outputs[0]],
emitter=TestEmitter()),
transition=transition,
attention=attention,
weights_init=IsotropicGaussian(0.1), biases_init=Constant(0),
add_contexts=False, seed=1234)
generator.initialize()
# Test 'cost_matrix' method
attended = tensor.tensor3("attended")
attended_mask = tensor.matrix("attended_mask")
outputs = tensor.tensor3('outputs')
mask = tensor.matrix('mask')
costs = generator.cost_matrix(outputs, mask,
attended=attended,
attended_mask=attended_mask)
costs_vals = costs.eval({outputs: output_vals,
mask: output_mask_vals,
attended: attended_vals,
attended_mask: attended_mask_vals})
assert costs_vals.shape == (inp_len, batch_size)
assert_allclose(costs_vals.sum(), 13.5042, rtol=1e-5)
# Test `generate` method
results = (
generator.generate(n_steps=n_steps, batch_size=attended.shape[1],
attended=attended, attended_mask=attended_mask))
assert len(results) == 5
states_vals, outputs_vals, glimpses_vals, weights_vals, costs_vals = (
theano.function([attended, attended_mask], results)
(attended_vals, attended_mask_vals))
assert states_vals.shape == (n_steps, batch_size, inp_dim)
assert states_vals.shape == outputs_vals.shape
assert glimpses_vals.shape == (n_steps, batch_size, attended_dim)
assert weights_vals.shape == (n_steps, batch_size, attended_len)
assert costs_vals.shape == (n_steps, batch_size)
assert_allclose(states_vals.sum(), 23.4172, rtol=1e-5)
# There is no generation cost in this case, since generation is
# deterministic
assert_allclose(costs_vals.sum(), 0.0, rtol=1e-5)
assert_allclose(weights_vals.sum(), 120.0, rtol=1e-5)
assert_allclose(glimpses_vals.sum(), 199.2402, rtol=1e-5)
assert_allclose(outputs_vals.sum(), -11.6008, rtol=1e-5)
示例14: main
def main():
logging.basicConfig(
level=logging.DEBUG,
format="%(asctime)s: %(name)s: %(levelname)s: %(message)s")
parser = argparse.ArgumentParser(
"Case study of generating a Markov chain with RNN.",
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument(
"mode", choices=["train", "sample"],
help="The mode to run. Use `train` to train a new model"
" and `sample` to sample a sequence generated by an"
" existing one.")
parser.add_argument(
"prefix", default="sine",
help="The prefix for model, timing and state files")
parser.add_argument(
"--steps", type=int, default=100,
help="Number of steps to plot")
args = parser.parse_args()
dim = 10
num_states = ChainIterator.num_states
feedback_dim = 8
transition = GatedRecurrent(name="transition", activation=Tanh(), dim=dim)
generator = SequenceGenerator(
LinearReadout(readout_dim=num_states, source_names=["states"],
emitter=SoftmaxEmitter(name="emitter"),
feedbacker=LookupFeedback(
num_states, feedback_dim, name='feedback'),
name="readout"),
transition,
weights_init=IsotropicGaussian(0.01), biases_init=Constant(0),
name="generator")
generator.allocate()
logger.debug("Parameters:\n" +
pprint.pformat(
[(key, value.get_value().shape) for key, value
in Selector(generator).get_params().items()],
width=120))
if args.mode == "train":
rng = numpy.random.RandomState(1)
batch_size = 50
generator.push_initialization_config()
transition.weights_init = Orthogonal()
generator.initialize()
logger.debug("transition.weights_init={}".format(
transition.weights_init))
cost = generator.cost(tensor.lmatrix('x')).sum()
gh_model = GroundhogModel(generator, cost)
state = GroundhogState(args.prefix, batch_size,
learning_rate=0.0001).as_dict()
data = ChainIterator(rng, 100, batch_size)
trainer = SGD(gh_model, state, data)
main_loop = MainLoop(data, None, None, gh_model, trainer, state, None)
main_loop.main()
elif args.mode == "sample":
load_params(generator, args.prefix + "model.npz")
sample = ComputationGraph(generator.generate(
n_steps=args.steps, batch_size=1, iterate=True)).function()
states, outputs, costs = [data[:, 0] for data in sample()]
numpy.set_printoptions(precision=3, suppress=True)
print("Generation cost:\n{}".format(costs.sum()))
freqs = numpy.bincount(outputs).astype(floatX)
freqs /= freqs.sum()
print("Frequencies:\n {} vs {}".format(freqs,
ChainIterator.equilibrium))
trans_freqs = numpy.zeros((num_states, num_states), dtype=floatX)
for a, b in zip(outputs, outputs[1:]):
trans_freqs[a, b] += 1
trans_freqs /= trans_freqs.sum(axis=1)[:, None]
print("Transition frequencies:\n{}\nvs\n{}".format(
trans_freqs, ChainIterator.trans_prob))
else:
assert False
示例15: main
def main(name, epochs, batch_size, learning_rate,
dim, mix_dim, old_model_name, max_length, bokeh, GRU, dropout,
depth, max_grad, step_method, epsilon, sample, skip, uniform, top):
#----------------------------------------------------------------------
datasource = name
def shnum(x):
""" Convert a positive float into a short tag-usable string
E.g.: 0 -> 0, 0.005 -> 53, 100 -> 1-2
"""
return '0' if x <= 0 else '%s%d' % (("%e"%x)[0], -np.floor(np.log10(x)))
jobname = "%s-%dX%dm%dd%dr%sb%de%s" % (datasource, depth, dim, mix_dim,
int(dropout*10),
shnum(learning_rate), batch_size,
shnum(epsilon))
if max_length != 600:
jobname += '-L%d'%max_length
if GRU:
jobname += 'g'
if max_grad != 5.:
jobname += 'G%g'%max_grad
if step_method != 'adam':
jobname += step_method
if skip:
jobname += 'D'
assert depth > 1
if top:
jobname += 'T'
assert depth > 1
if uniform > 0.:
jobname += 'u%d'%int(uniform*100)
if debug:
jobname += ".debug"
if sample:
print("Sampling")
else:
print("\nRunning experiment %s" % jobname)
if old_model_name:
print("starting from model %s"%old_model_name)
#----------------------------------------------------------------------
transitions = [GatedRecurrent(dim=dim) if GRU else LSTM(dim=dim)
for _ in range(depth)]
if depth > 1:
transition = RecurrentStack(transitions, name="transition",
fast=True, skip_connections=skip or top)
if skip:
source_names=['states'] + ['states_%d'%d for d in range(1,depth)]
else:
source_names=['states_%d'%(depth-1)]
else:
transition = transitions[0]
transition.name = "transition"
source_names=['states']
emitter = SketchEmitter(mix_dim=mix_dim,
epsilon=epsilon,
name="emitter")
readout = Readout(
readout_dim=emitter.get_dim('inputs'),
source_names=source_names,
emitter=emitter,
name="readout")
normal_inputs = [name for name in transition.apply.sequences
if 'mask' not in name]
fork = Fork(normal_inputs, prototype=Linear(use_bias=True))
generator = SequenceGenerator(readout=readout, transition=transition,
fork=fork)
# Initialization settings
if uniform > 0.:
generator.weights_init = Uniform(width=uniform*2.)
else:
generator.weights_init = OrthogonalGlorot()
generator.biases_init = Constant(0)
# Build the cost computation graph [steps, batch_size, 3]
x = T.tensor3('features', dtype=floatX)
if debug:
x.tag.test_value = np.ones((max_length,batch_size,3)).astype(floatX)
x = x[:max_length,:,:] # has to be after setting test_value
cost = generator.cost(x)
cost.name = "sequence_log_likelihood"
# Give an idea of what's going on
model = Model(cost)
params = model.get_params()
logger.info("Parameters:\n" +
pprint.pformat(
[(key, value.get_value().shape) for key, value
in params.items()],
width=120))
model_size = 0
for v in params.itervalues():
s = v.get_value().shape
#.........這裏部分代碼省略.........