本文整理匯總了Python中blocks.bricks.sequence_generators.SequenceGenerator.biases_init方法的典型用法代碼示例。如果您正苦於以下問題:Python SequenceGenerator.biases_init方法的具體用法?Python SequenceGenerator.biases_init怎麽用?Python SequenceGenerator.biases_init使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類blocks.bricks.sequence_generators.SequenceGenerator
的用法示例。
在下文中一共展示了SequenceGenerator.biases_init方法的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: main
# 需要導入模塊: from blocks.bricks.sequence_generators import SequenceGenerator [as 別名]
# 或者: from blocks.bricks.sequence_generators.SequenceGenerator import biases_init [as 別名]
def main(name, epochs, batch_size, learning_rate,
dim, mix_dim, old_model_name, max_length, bokeh, GRU, dropout,
depth, max_grad, step_method, epsilon, sample, skip, uniform, top):
#----------------------------------------------------------------------
datasource = name
def shnum(x):
""" Convert a positive float into a short tag-usable string
E.g.: 0 -> 0, 0.005 -> 53, 100 -> 1-2
"""
return '0' if x <= 0 else '%s%d' % (("%e"%x)[0], -np.floor(np.log10(x)))
jobname = "%s-%dX%dm%dd%dr%sb%de%s" % (datasource, depth, dim, mix_dim,
int(dropout*10),
shnum(learning_rate), batch_size,
shnum(epsilon))
if max_length != 600:
jobname += '-L%d'%max_length
if GRU:
jobname += 'g'
if max_grad != 5.:
jobname += 'G%g'%max_grad
if step_method != 'adam':
jobname += step_method
if skip:
jobname += 'D'
assert depth > 1
if top:
jobname += 'T'
assert depth > 1
if uniform > 0.:
jobname += 'u%d'%int(uniform*100)
if debug:
jobname += ".debug"
if sample:
print("Sampling")
else:
print("\nRunning experiment %s" % jobname)
if old_model_name:
print("starting from model %s"%old_model_name)
#----------------------------------------------------------------------
transitions = [GatedRecurrent(dim=dim) if GRU else LSTM(dim=dim)
for _ in range(depth)]
if depth > 1:
transition = RecurrentStack(transitions, name="transition",
fast=True, skip_connections=skip or top)
if skip:
source_names=['states'] + ['states_%d'%d for d in range(1,depth)]
else:
source_names=['states_%d'%(depth-1)]
else:
transition = transitions[0]
transition.name = "transition"
source_names=['states']
emitter = SketchEmitter(mix_dim=mix_dim,
epsilon=epsilon,
name="emitter")
readout = Readout(
readout_dim=emitter.get_dim('inputs'),
source_names=source_names,
emitter=emitter,
name="readout")
normal_inputs = [name for name in transition.apply.sequences
if 'mask' not in name]
fork = Fork(normal_inputs, prototype=Linear(use_bias=True))
generator = SequenceGenerator(readout=readout, transition=transition,
fork=fork)
# Initialization settings
if uniform > 0.:
generator.weights_init = Uniform(width=uniform*2.)
else:
generator.weights_init = OrthogonalGlorot()
generator.biases_init = Constant(0)
# Build the cost computation graph [steps, batch_size, 3]
x = T.tensor3('features', dtype=floatX)
if debug:
x.tag.test_value = np.ones((max_length,batch_size,3)).astype(floatX)
x = x[:max_length,:,:] # has to be after setting test_value
cost = generator.cost(x)
cost.name = "sequence_log_likelihood"
# Give an idea of what's going on
model = Model(cost)
params = model.get_params()
logger.info("Parameters:\n" +
pprint.pformat(
[(key, value.get_value().shape) for key, value
in params.items()],
width=120))
model_size = 0
for v in params.itervalues():
s = v.get_value().shape
#.........這裏部分代碼省略.........
示例2: SimpleSequenceAttention
# 需要導入模塊: from blocks.bricks.sequence_generators import SequenceGenerator [as 別名]
# 或者: from blocks.bricks.sequence_generators.SequenceGenerator import biases_init [as 別名]
attention = SimpleSequenceAttention(
state_names=source_names, state_dims=[hidden_size_recurrent], attended_dim=context_size, name="attention"
)
readout = Readout(
readout_dim=hidden_size_recurrent,
source_names=source_names + ["feedback"] + ["glimpses"],
emitter=emitter,
feedback_brick=feedback,
name="readout",
)
generator = SequenceGenerator(readout=readout, transition=transition, attention=attention, name="generator")
generator.weights_init = IsotropicGaussian(0.01)
generator.biases_init = Constant(0.0)
generator.push_initialization_config()
generator.transition.biases_init = IsotropicGaussian(0.01, 1)
generator.transition.push_initialization_config()
generator.initialize()
lookup.weights_init = IsotropicGaussian(0.001)
lookup.biases_init = Constant(0.0)
lookup.initialize()
# states = {}
states = [state for state in generator.transition.apply.outputs if state != "step"]
# ipdb.set_trace()
示例3: main_rnn
# 需要導入模塊: from blocks.bricks.sequence_generators import SequenceGenerator [as 別名]
# 或者: from blocks.bricks.sequence_generators.SequenceGenerator import biases_init [as 別名]
def main_rnn(config):
x = tensor.tensor3('features')
y = tensor.matrix('targets')
# if 'LSTM' in config['model'] :
# from models import getLSTMstack
# y_hat = getLSTMstack(input_dim=13, input_var=x, depth=int(config['model'][-1]))
# else :
# raise Exception("These are not the LSTM we are looking for")
# y_hat = model.apply(x)
emitter = TestEmitter()
# emitter = TrivialEmitter(readout_dim=config['lstm_hidden_size'])
# cost_func = SquaredError()
# @application
# def qwe(self, readouts, outputs=None):
# print(type(self), type(readouts))
# x = cost_func.apply(readouts,outputs)
# return x
print(type(emitter.cost))
# emitter.cost = qwe
# print(type(qwe))
steps = 2
n_samples= config['target_size']
transition = [LSTM(config['lstm_hidden_size']) for _ in range(4)]
transition = RecurrentStack(transition,
name="transition", skip_connections=False)
source_names = [name for name in transition.apply.states if 'states' in name]
readout = Readout(emitter, readout_dim=config['lstm_hidden_size'], source_names=source_names,feedback_brick=None, merge=None, merge_prototype=None, post_merge=None, merged_dim=None)
seqgen = SequenceGenerator(readout, transition, attention=None, add_contexts=False)
seqgen.weights_init = IsotropicGaussian(0.01)
seqgen.biases_init = Constant(0.)
seqgen.push_initialization_config()
seqgen.transition.biases_init = IsotropicGaussian(0.01,1)
seqgen.transition.push_initialization_config()
seqgen.initialize()
states = seqgen.transition.apply.outputs
print('states',states)
states = {name: shared_floatx_zeros((n_samples, config['lstm_hidden_size']))
for name in states}
cost_matrix = seqgen.cost_matrix(x, **states)
cost = cost_matrix.mean()
cost.name = "nll"
cg = ComputationGraph(cost)
model = Model(cost)
#Cost
# cost = SquaredError().apply(y_hat ,y)
#cost = CategoricalCrossEntropy().apply(T.flatten(),Y)
#
#for sampling
#cg = ComputationGraph(seqgen.generate(n_steps=steps,batch_size=n_samples, iterate=True))
algorithm = GradientDescent(
cost=cost, parameters=cg.parameters,
step_rule=Scale(learning_rate=config['learning_rate']))
#Getting the stream
train_stream = MFCC.get_stream(config['batch_size'],config['source_size'],config['target_size'],config['num_examples'])
#Monitoring stuff
extensions = [Timing(),
FinishAfter(after_n_batches=config['num_batches']),
#DataStreamMonitoring([cost, error_rate],test_stream,prefix="test"),
TrainingDataMonitoring([cost], prefix="train", every_n_batches=1),
#Checkpoint(save_to),
ProgressBar(),
Printing(every_n_batches=1)]
main_loop = MainLoop(
algorithm,
train_stream,
# model=model,
extensions=extensions)
main_loop.run()