當前位置: 首頁>>代碼示例>>Python>>正文


Python SequenceGenerator.cost方法代碼示例

本文整理匯總了Python中blocks.bricks.sequence_generators.SequenceGenerator.cost方法的典型用法代碼示例。如果您正苦於以下問題:Python SequenceGenerator.cost方法的具體用法?Python SequenceGenerator.cost怎麽用?Python SequenceGenerator.cost使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在blocks.bricks.sequence_generators.SequenceGenerator的用法示例。


在下文中一共展示了SequenceGenerator.cost方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_sequence_generator

# 需要導入模塊: from blocks.bricks.sequence_generators import SequenceGenerator [as 別名]
# 或者: from blocks.bricks.sequence_generators.SequenceGenerator import cost [as 別名]
def test_sequence_generator():
    # Disclaimer: here we only check shapes, not values.

    output_dim = 1
    dim = 20
    batch_size = 30
    n_steps = 10

    transition = GatedRecurrent(
        name="transition", activation=Tanh(), dim=dim,
        weights_init=Orthogonal())
    generator = SequenceGenerator(
        LinearReadout(readout_dim=output_dim, source_names=["states"],
                      emitter=TestEmitter(name="emitter"), name="readout"),
        transition,
        weights_init=IsotropicGaussian(0.01), biases_init=Constant(0),
        name="generator")
    generator.initialize()

    y = tensor.tensor3('y')
    mask = tensor.matrix('mask')
    costs = generator.cost(y, mask)
    assert costs.ndim == 2
    costs_val = theano.function([y, mask], [costs])(
        numpy.zeros((n_steps, batch_size, output_dim), dtype=floatX),
        numpy.ones((n_steps, batch_size), dtype=floatX))[0]
    assert costs_val.shape == (n_steps, batch_size)

    states, outputs, costs = [variable.eval() for variable in
                              generator.generate(
                                  iterate=True, batch_size=batch_size,
                                  n_steps=n_steps)]
    assert states.shape == (n_steps, batch_size, dim)
    assert outputs.shape == (n_steps, batch_size, output_dim)
    assert costs.shape == (n_steps, batch_size)
開發者ID:madisonmay,項目名稱:blocks,代碼行數:37,代碼來源:test_sequence_generators.py

示例2: test_integer_sequence_generator

# 需要導入模塊: from blocks.bricks.sequence_generators import SequenceGenerator [as 別名]
# 或者: from blocks.bricks.sequence_generators.SequenceGenerator import cost [as 別名]
def test_integer_sequence_generator():
    # Disclaimer: here we only check shapes, not values.

    readout_dim = 5
    feedback_dim = 3
    dim = 20
    batch_size = 30
    n_steps = 10

    transition = GatedRecurrent(
        name="transition", activation=Tanh(), dim=dim,
        weights_init=Orthogonal())
    generator = SequenceGenerator(
        LinearReadout(readout_dim=readout_dim, source_names=["states"],
                      emitter=SoftmaxEmitter(name="emitter"),
                      feedbacker=LookupFeedback(readout_dim, feedback_dim),
                      name="readout"),
        transition,
        weights_init=IsotropicGaussian(0.01), biases_init=Constant(0),
        name="generator")
    generator.initialize()

    y = tensor.lmatrix('y')
    mask = tensor.matrix('mask')
    costs = generator.cost(y, mask)
    assert costs.ndim == 2
    costs_val = theano.function([y, mask], [costs])(
        numpy.zeros((n_steps, batch_size), dtype='int64'),
        numpy.ones((n_steps, batch_size), dtype=floatX))[0]
    assert costs_val.shape == (n_steps, batch_size)

    states, outputs, costs = generator.generate(
        iterate=True, batch_size=batch_size, n_steps=n_steps)
    states_val, outputs_val, costs_val = theano.function(
        [], [states, outputs, costs],
        updates=costs.owner.inputs[0].owner.tag.updates)()
    assert states_val.shape == (n_steps, batch_size, dim)
    assert outputs_val.shape == (n_steps, batch_size)
    assert outputs_val.dtype == 'int64'
    assert costs_val.shape == (n_steps, batch_size)
開發者ID:madisonmay,項目名稱:blocks,代碼行數:42,代碼來源:test_sequence_generators.py

示例3: test_recurrentstack_sequence_generator

# 需要導入模塊: from blocks.bricks.sequence_generators import SequenceGenerator [as 別名]
# 或者: from blocks.bricks.sequence_generators.SequenceGenerator import cost [as 別名]
def test_recurrentstack_sequence_generator():
    """Test RecurrentStack behaviour inside a SequenceGenerator.

    """
    floatX = theano.config.floatX
    rng = numpy.random.RandomState(1234)

    output_dim = 1
    dim = 20
    batch_size = 30
    n_steps = 10

    depth=2
    transitions = [LSTM(dim=dim) for _ in range(depth)]
    transition = RecurrentStack(transitions,fast=True,
                                weights_init=Constant(2),
                                biases_init=Constant(0))
    generator = SequenceGenerator(
        Readout(readout_dim=output_dim, source_names=["states_%d"%(depth-1)],
                emitter=TestEmitter()),
        transition,
        weights_init=IsotropicGaussian(0.1), biases_init=Constant(0.0),
        seed=1234)
    generator.initialize()

    y = tensor.tensor3('y')

    cost = generator.cost(y)

    # Check that all states can be accessed and not just the state connected
    # to readout.
    cg = ComputationGraph(cost)
    from blocks.roles import INPUT, OUTPUT
    dropout_target = VariableFilter(roles=[INNER_OUTPUT],
                                    # bricks=transitions,
                                    # name_regex='*'
                                    )(cg.variables)
    assert_equal(len(dropout_target), depth)
開發者ID:ctozlm,項目名稱:sketch,代碼行數:40,代碼來源:recurrent_stack.py

示例4: main

# 需要導入模塊: from blocks.bricks.sequence_generators import SequenceGenerator [as 別名]
# 或者: from blocks.bricks.sequence_generators.SequenceGenerator import cost [as 別名]
def main():
    logging.basicConfig(
        level=logging.DEBUG,
        format="%(asctime)s: %(name)s: %(levelname)s: %(message)s")

    parser = argparse.ArgumentParser(
        "Case study of language modeling with RNN",
        formatter_class=argparse.ArgumentDefaultsHelpFormatter)
    parser.add_argument(
        "mode", choices=["train", "sample"],
        help="The mode to run. Use `train` to train a new model"
             " and `sample` to sample a sequence generated by an"
             " existing one.")
    parser.add_argument(
        "prefix", default="sine",
        help="The prefix for model, timing and state files")
    parser.add_argument(
        "state", nargs="?", default="",
        help="Changes to Groundhog state")
    parser.add_argument("--path", help="Path to a language dataset")
    parser.add_argument("--dict", help="Path to the dataset dictionary")
    parser.add_argument("--restart", help="Start anew")
    parser.add_argument(
        "--reset", action="store_true", default=False,
        help="Reset the hidden state between batches")
    parser.add_argument(
        "--steps", type=int, default=100,
        help="Number of steps to plot for the 'sample' mode"
             " OR training sequence length for the 'train' mode.")
    args = parser.parse_args()
    logger.debug("Args:\n" + str(args))

    dim = 200
    num_chars = 50

    transition = GatedRecurrent(
        name="transition", activation=Tanh(), dim=dim,
        weights_init=Orthogonal())
    generator = SequenceGenerator(
        LinearReadout(readout_dim=num_chars, source_names=["states"],
                      emitter=SoftmaxEmitter(name="emitter"),
                      feedbacker=LookupFeedback(
                          num_chars, dim, name='feedback'),
                      name="readout"),
        transition,
        weights_init=IsotropicGaussian(0.01), biases_init=Constant(0),
        name="generator")
    generator.allocate()
    logger.debug("Parameters:\n" +
                 pprint.pformat(
                     [(key, value.get_value().shape) for key, value
                      in Selector(generator).get_params().items()],
                     width=120))

    if args.mode == "train":
        batch_size = 1
        seq_len = args.steps

        generator.initialize()

        # Build cost computation graph that uses the saved hidden states.
        # An issue: for Groundhog this is completely transparent, that's
        # why it does not carry the hidden state over the period when
        # validation in done. We should find a way to fix in the future.
        x = tensor.lmatrix('x')
        init_states = shared_floatx_zeros((batch_size, dim),
                                          name='init_states')
        reset = tensor.scalar('reset')
        cost = ComputationGraph(
            generator.cost(x, states=init_states * reset).sum())
        # TODO: better search routine
        states = [v for v in cost.variables
                  if hasattr(v.tag, 'application_call')
                  and v.tag.application_call.brick == generator.transition
                  and (v.tag.application_call.application ==
                       generator.transition.apply)
                  and v.tag.role == VariableRole.OUTPUT
                  and v.tag.name == 'states']
        assert len(states) == 1
        states = states[0]

        gh_model = GroundhogModel(generator, cost)
        gh_model.properties.append(
            ('bpc', cost.outputs[0] * numpy.log(2) / seq_len))
        gh_model.properties.append(('mean_init_state', init_states.mean()))
        gh_model.properties.append(('reset', reset))
        if not args.reset:
            gh_model.updates.append((init_states, states[-1]))

        state = GroundhogState(args.prefix, batch_size,
                               learning_rate=0.0001).as_dict()
        changes = eval("dict({})".format(args.state))
        state.update(changes)

        def output_format(x, y, reset):
            return dict(x=x[:, None], reset=reset)
        train, valid, test = [
            LMIterator(batch_size=batch_size,
                       use_infinite_loop=mode == 'train',
                       path=args.path,
#.........這裏部分代碼省略.........
開發者ID:madisonmay,項目名稱:blocks,代碼行數:103,代碼來源:language.py

示例5: main

# 需要導入模塊: from blocks.bricks.sequence_generators import SequenceGenerator [as 別名]
# 或者: from blocks.bricks.sequence_generators.SequenceGenerator import cost [as 別名]
def main(name, epochs, batch_size, learning_rate,
         dim, mix_dim, old_model_name, max_length, bokeh, GRU, dropout,
         depth, max_grad, step_method, epsilon, sample, skip, uniform, top):

    #----------------------------------------------------------------------
    datasource = name

    def shnum(x):
        """ Convert a positive float into a short tag-usable string
             E.g.: 0 -> 0, 0.005 -> 53, 100 -> 1-2
        """
        return '0' if x <= 0 else '%s%d' % (("%e"%x)[0], -np.floor(np.log10(x)))

    jobname = "%s-%dX%dm%dd%dr%sb%de%s" % (datasource, depth, dim, mix_dim,
                                           int(dropout*10),
                                           shnum(learning_rate), batch_size,
                                           shnum(epsilon))
    if max_length != 600:
        jobname += '-L%d'%max_length

    if GRU:
        jobname += 'g'
    if max_grad != 5.:
        jobname += 'G%g'%max_grad
    if step_method != 'adam':
        jobname += step_method
    if skip:
        jobname += 'D'
        assert depth > 1
    if top:
        jobname += 'T'
        assert depth > 1
    if uniform > 0.:
        jobname += 'u%d'%int(uniform*100)

    if debug:
        jobname += ".debug"

    if sample:
        print("Sampling")
    else:
        print("\nRunning experiment %s" % jobname)
    if old_model_name:
        print("starting from model %s"%old_model_name)

    #----------------------------------------------------------------------
    transitions = [GatedRecurrent(dim=dim) if GRU else LSTM(dim=dim)
                   for _ in range(depth)]
    if depth > 1:
        transition = RecurrentStack(transitions, name="transition",
                                    fast=True, skip_connections=skip or top)
        if skip:
            source_names=['states'] + ['states_%d'%d for d in range(1,depth)]
        else:
            source_names=['states_%d'%(depth-1)]
    else:
        transition = transitions[0]
        transition.name = "transition"
        source_names=['states']

    emitter = SketchEmitter(mix_dim=mix_dim,
                            epsilon=epsilon,
                            name="emitter")
    readout = Readout(
        readout_dim=emitter.get_dim('inputs'),
        source_names=source_names,
        emitter=emitter,
        name="readout")
    normal_inputs = [name for name in transition.apply.sequences
                     if 'mask' not in name]
    fork = Fork(normal_inputs, prototype=Linear(use_bias=True))
    generator = SequenceGenerator(readout=readout, transition=transition,
                                  fork=fork)

    # Initialization settings
    if uniform > 0.:
        generator.weights_init = Uniform(width=uniform*2.)
    else:
        generator.weights_init = OrthogonalGlorot()
    generator.biases_init = Constant(0)

    # Build the cost computation graph [steps, batch_size, 3]
    x = T.tensor3('features', dtype=floatX)
    if debug:
        x.tag.test_value = np.ones((max_length,batch_size,3)).astype(floatX)
    x = x[:max_length,:,:]  # has to be after setting test_value
    cost = generator.cost(x)
    cost.name = "sequence_log_likelihood"

    # Give an idea of what's going on
    model = Model(cost)
    params = model.get_params()
    logger.info("Parameters:\n" +
                pprint.pformat(
                    [(key, value.get_value().shape) for key, value
                     in params.items()],
                    width=120))
    model_size = 0
    for v in params.itervalues():
        s = v.get_value().shape
#.........這裏部分代碼省略.........
開發者ID:dribnet,項目名稱:sketch,代碼行數:103,代碼來源:sketch.py

示例6: main

# 需要導入模塊: from blocks.bricks.sequence_generators import SequenceGenerator [as 別名]
# 或者: from blocks.bricks.sequence_generators.SequenceGenerator import cost [as 別名]
def main():
    logging.basicConfig(
        level=logging.DEBUG,
        format="%(asctime)s: %(name)s: %(levelname)s: %(message)s")

    parser = argparse.ArgumentParser(
        "Case study of generating a Markov chain with RNN.",
        formatter_class=argparse.ArgumentDefaultsHelpFormatter)
    parser.add_argument(
        "mode", choices=["train", "sample"],
        help="The mode to run. Use `train` to train a new model"
             " and `sample` to sample a sequence generated by an"
             " existing one.")
    parser.add_argument(
        "prefix", default="sine",
        help="The prefix for model, timing and state files")
    parser.add_argument(
        "--steps", type=int, default=100,
        help="Number of steps to plot")
    args = parser.parse_args()

    dim = 10
    num_states = ChainIterator.num_states
    feedback_dim = 8

    transition = GatedRecurrent(name="transition", activation=Tanh(), dim=dim)
    generator = SequenceGenerator(
        LinearReadout(readout_dim=num_states, source_names=["states"],
                      emitter=SoftmaxEmitter(name="emitter"),
                      feedbacker=LookupFeedback(
                          num_states, feedback_dim, name='feedback'),
                      name="readout"),
        transition,
        weights_init=IsotropicGaussian(0.01), biases_init=Constant(0),
        name="generator")
    generator.allocate()
    logger.debug("Parameters:\n" +
                 pprint.pformat(
                     [(key, value.get_value().shape) for key, value
                      in Selector(generator).get_params().items()],
                     width=120))

    if args.mode == "train":
        rng = numpy.random.RandomState(1)
        batch_size = 50

        generator.push_initialization_config()
        transition.weights_init = Orthogonal()
        generator.initialize()
        logger.debug("transition.weights_init={}".format(
            transition.weights_init))

        cost = generator.cost(tensor.lmatrix('x')).sum()
        gh_model = GroundhogModel(generator, cost)
        state = GroundhogState(args.prefix, batch_size,
                               learning_rate=0.0001).as_dict()
        data = ChainIterator(rng, 100, batch_size)
        trainer = SGD(gh_model, state, data)
        main_loop = MainLoop(data, None, None, gh_model, trainer, state, None)
        main_loop.main()
    elif args.mode == "sample":
        load_params(generator,  args.prefix + "model.npz")

        sample = ComputationGraph(generator.generate(
            n_steps=args.steps, batch_size=1, iterate=True)).function()

        states, outputs, costs = [data[:, 0] for data in sample()]

        numpy.set_printoptions(precision=3, suppress=True)
        print("Generation cost:\n{}".format(costs.sum()))

        freqs = numpy.bincount(outputs).astype(floatX)
        freqs /= freqs.sum()
        print("Frequencies:\n {} vs {}".format(freqs,
                                               ChainIterator.equilibrium))

        trans_freqs = numpy.zeros((num_states, num_states), dtype=floatX)
        for a, b in zip(outputs, outputs[1:]):
            trans_freqs[a, b] += 1
        trans_freqs /= trans_freqs.sum(axis=1)[:, None]
        print("Transition frequencies:\n{}\nvs\n{}".format(
            trans_freqs, ChainIterator.trans_prob))
    else:
        assert False
開發者ID:madisonmay,項目名稱:blocks,代碼行數:86,代碼來源:markov_chain.py

示例7: train

# 需要導入模塊: from blocks.bricks.sequence_generators import SequenceGenerator [as 別名]
# 或者: from blocks.bricks.sequence_generators.SequenceGenerator import cost [as 別名]
def train():

    if os.path.isfile('trainingdata.tar'):
        with open('trainingdata.tar', 'rb') as f:
            main = load(f)
    else:
        hidden_size = 512
        filename = 'warpeace.hdf5'

        encoder = HDF5CharEncoder('warpeace_input.txt', 1000)
        encoder.write(filename)
        alphabet_len = encoder.length

        x = theano.tensor.lmatrix('x')

        readout = Readout(
            readout_dim=alphabet_len,
            feedback_brick=LookupFeedback(alphabet_len, hidden_size, name='feedback'),
            source_names=['states'],
            emitter=RandomSoftmaxEmitter(),
            name='readout'
        )

        transition = GatedRecurrent(
            activation=Tanh(),
            dim=hidden_size)
        transition.weights_init = IsotropicGaussian(0.01)

        gen = SequenceGenerator(readout=readout,
                                transition=transition,
                                weights_init=IsotropicGaussian(0.01),
                                biases_init=Constant(0),
                                name='sequencegenerator')

        gen.push_initialization_config()
        gen.initialize()

        cost = gen.cost(outputs=x)
        cost.name = 'cost'

        cg = ComputationGraph(cost)

        algorithm = GradientDescent(cost=cost,
                                    parameters=cg.parameters,
                                    step_rule=Scale(0.5))

        train_set = encoder.get_dataset()
        train_stream = DataStream.default_stream(
            train_set, iteration_scheme=SequentialScheme(
                train_set.num_examples, batch_size=128))

        main = MainLoop(
            model=Model(cost),
            data_stream=train_stream,
            algorithm=algorithm,
            extensions=[
                FinishAfter(),
                Printing(),
                Checkpoint('trainingdata.tar', every_n_epochs=10),
                ShowOutput(every_n_epochs=10)
            ])

    main.run()
開發者ID:grappli,項目名稱:pm1,代碼行數:65,代碼來源:train.py

示例8: Decoder

# 需要導入模塊: from blocks.bricks.sequence_generators import SequenceGenerator [as 別名]
# 或者: from blocks.bricks.sequence_generators.SequenceGenerator import cost [as 別名]
class Decoder(Initializable):
    def __init__(self, vocab_size, embedding_dim, state_dim,
                 representation_dim, **kwargs):
        super(Decoder, self).__init__(**kwargs)
        self.vocab_size = vocab_size
        self.embedding_dim = embedding_dim
        self.state_dim = state_dim
        self.representation_dim = representation_dim

        readout = Readout(
            source_names=['states', 'feedback', 'readout_context'],
            readout_dim=self.vocab_size,
            emitter=SoftmaxEmitter(),
            feedback_brick=LookupFeedback(vocab_size, embedding_dim),
            post_merge=InitializableFeedforwardSequence(
                [Bias(dim=1000).apply,
                 Maxout(num_pieces=2).apply,
                 Linear(input_dim=state_dim / 2, output_dim=100,
                        use_bias=False).apply,
                 Linear(input_dim=100).apply]),
            merged_dim=1000)

        self.transition = GatedRecurrentWithContext(Tanh(), dim=state_dim,
                                                    name='decoder')
        # Readout will apply the linear transformation to 'readout_context'
        # with a Merge brick, so no need to fork it here
        self.fork = Fork([name for name in
                          self.transition.apply.contexts +
                          self.transition.apply.states
                          if name != 'readout_context'], prototype=Linear())
        self.tanh = Tanh()

        self.sequence_generator = SequenceGenerator(
            readout=readout, transition=self.transition,
            fork_inputs=[name for name in self.transition.apply.sequences
                         if name != 'mask'],
        )

        self.children = [self.fork, self.sequence_generator, self.tanh]

    def _push_allocation_config(self):
        self.fork.input_dim = self.representation_dim
        self.fork.output_dims = [self.state_dim
                                 for _ in self.fork.output_names]

    @application(inputs=['representation', 'target_sentence_mask',
                         'target_sentence'], outputs=['cost'])
    def cost(self, representation, target_sentence, target_sentence_mask):
        target_sentence = target_sentence.dimshuffle(1, 0)
        target_sentence_mask = target_sentence_mask.T

        # The initial state and contexts, all functions of the representation
        contexts = {key: value.dimshuffle('x', 0, 1)
                    if key not in self.transition.apply.states else value
                    for key, value
                    in self.fork.apply(representation, as_dict=True).items()}
        contexts['states'] = self.tanh.apply(contexts['states'])
        cost = self.sequence_generator.cost(**merge(
            contexts, {'mask': target_sentence_mask,
                       'outputs': target_sentence,
                       'readout_context': representation.dimshuffle('x', 0, 1)}
        ))

        return (cost * target_sentence_mask).sum() / target_sentence_mask.shape[1]
開發者ID:rizar,項目名稱:NMT,代碼行數:66,代碼來源:model_encdec.py

示例9: main

# 需要導入模塊: from blocks.bricks.sequence_generators import SequenceGenerator [as 別名]
# 或者: from blocks.bricks.sequence_generators.SequenceGenerator import cost [as 別名]
def main():
    logging.basicConfig(
        level=logging.DEBUG,
        format="%(asctime)s: %(name)s: %(levelname)s: %(message)s")

    parser = argparse.ArgumentParser(
        "Case study of generating simple 1d sequences with RNN.",
        formatter_class=argparse.ArgumentDefaultsHelpFormatter)
    parser.add_argument(
        "mode", choices=["train", "plot"],
        help="The mode to run. Use `train` to train a new model"
             " and `plot` to plot a sequence generated by an"
             " existing one.")
    parser.add_argument(
        "prefix", default="sine",
        help="The prefix for model, timing and state files")
    parser.add_argument(
        "--input-noise", type=float, default=0.0,
        help="Adds Gaussian noise of given intensity to the "
             " training sequences.")
    parser.add_argument(
        "--function", default="lambda a, x: numpy.sin(a * x)",
        help="An analytical description of the sequence family to learn."
             " The arguments before the last one are considered parameters.")
    parser.add_argument(
        "--steps", type=int, default=100,
        help="Number of steps to plot")
    parser.add_argument(
        "--params",
        help="Parameter values for plotting")
    args = parser.parse_args()

    function = eval(args.function)
    num_params = len(inspect.getargspec(function).args) - 1

    class Emitter(TrivialEmitter):
        @application
        def cost(self, readouts, outputs):
            """Compute MSE."""
            return ((readouts - outputs) ** 2).sum(axis=readouts.ndim - 1)

    transition = GatedRecurrent(
        name="transition", activation=Tanh(), dim=10,
        weights_init=Orthogonal())
    with_params = AddParameters(transition, num_params, "params",
                                name="with_params")
    generator = SequenceGenerator(
        LinearReadout(readout_dim=1, source_names=["states"],
                      emitter=Emitter(name="emitter"), name="readout"),
        with_params,
        weights_init=IsotropicGaussian(0.01), biases_init=Constant(0),
        name="generator")
    generator.allocate()
    logger.debug("Parameters:\n" +
                 pprint.pformat(
                     [(key, value.get_value().shape) for key, value
                      in Selector(generator).get_params().items()],
                     width=120))

    if args.mode == "train":
        seed = 1
        rng = numpy.random.RandomState(seed)
        batch_size = 10

        generator.initialize()

        cost = ComputationGraph(
            generator.cost(tensor.tensor3('x'),
                           params=tensor.matrix("params")).sum())
        cost = apply_noise(cost, cost.inputs, args.input_noise)

        gh_model = GroundhogModel(generator, cost)
        state = GroundhogState(args.prefix, batch_size,
                               learning_rate=0.0001).as_dict()
        data = SeriesIterator(rng, function, 100, batch_size)
        trainer = SGD(gh_model, state, data)
        main_loop = MainLoop(data, None, None, gh_model, trainer, state, None)
        main_loop.load()
        main_loop.main()
    elif args.mode == "plot":
        load_params(generator,  args.prefix + "model.npz")

        params = tensor.matrix("params")
        sample = theano.function([params], generator.generate(
            params=params, n_steps=args.steps, batch_size=1))

        param_values = numpy.array(map(float, args.params.split()),
                                   dtype=floatX)
        states, outputs, _ = sample(param_values[None, :])
        actual = outputs[:, 0, 0]
        desired = numpy.array([function(*(list(param_values) + [T]))
                               for T in range(args.steps)])
        print("MSE: {}".format(((actual - desired) ** 2).sum()))

        pyplot.plot(numpy.hstack([actual[:, None], desired[:, None]]))
        pyplot.show()
    else:
        assert False
開發者ID:sherjilozair,項目名稱:blocks,代碼行數:100,代碼來源:sine.py

示例10: test_attention_transition

# 需要導入模塊: from blocks.bricks.sequence_generators import SequenceGenerator [as 別名]
# 或者: from blocks.bricks.sequence_generators.SequenceGenerator import cost [as 別名]
def test_attention_transition():
    inp_dim = 2
    inp_len = 10
    attended_dim = 3
    attended_len = 11
    batch_size = 4
    n_steps = 30

    transition = TestTransition(dim=inp_dim, attended_dim=attended_dim,
                                name="transition")
    attention = SequenceContentAttention(transition.apply.states,
                                         match_dim=inp_dim, name="attention")
    mixer = Mixer([name for name in transition.apply.sequences
                   if name != 'mask'],
                  attention.take_look.outputs[0],
                  name="mixer")
    att_trans = AttentionTransition(transition, attention, mixer,
                                    name="att_trans")
    att_trans.weights_init = IsotropicGaussian(0.01)
    att_trans.biases_init = Constant(0)
    att_trans.initialize()

    attended = tensor.tensor3("attended")
    attended_mask = tensor.matrix("attended_mask")
    inputs = tensor.tensor3("inputs")
    inputs_mask = tensor.matrix("inputs_mask")
    states, glimpses, weights = att_trans.apply(
        input_=inputs, mask=inputs_mask,
        attended=attended, attended_mask=attended_mask)
    assert states.ndim == 3
    assert glimpses.ndim == 3
    assert weights.ndim == 3

    input_vals = numpy.zeros((inp_len, batch_size, inp_dim),
                             dtype=floatX)
    input_mask_vals = numpy.ones((inp_len, batch_size),
                                 dtype=floatX)
    attended_vals = numpy.zeros((attended_len, batch_size, attended_dim),
                                dtype=floatX)
    attended_mask_vals = numpy.ones((attended_len, batch_size),
                                    dtype=floatX)

    func = theano.function([inputs, inputs_mask, attended, attended_mask],
                           [states, glimpses, weights])
    states_vals, glimpses_vals, weight_vals = func(
        input_vals, input_mask_vals,
        attended_vals, attended_mask_vals)

    assert states_vals.shape == input_vals.shape
    assert glimpses_vals.shape == (inp_len, batch_size, attended_dim)
    assert weight_vals.shape == (inp_len, batch_size, attended_len)

    # Test SequenceGenerator using AttentionTransition
    generator = SequenceGenerator(
        LinearReadout(readout_dim=inp_dim, source_names=["state"],
                      emitter=TestEmitter(name="emitter"),
                      name="readout"),
        transition=transition,
        attention=attention,
        weights_init=IsotropicGaussian(0.01), biases_init=Constant(0),
        name="generator")

    outputs = tensor.tensor3('outputs')
    costs = generator.cost(outputs, attended=attended,
                           attended_mask=attended_mask)
    costs_vals = costs.eval({outputs: input_vals,
                            attended: attended_vals,
                            attended_mask: attended_mask_vals})
    assert costs_vals.shape == (inp_len, batch_size)

    results = (
        generator.generate(n_steps=n_steps, batch_size=attended.shape[1],
                           attended=attended, attended_mask=attended_mask))
    assert len(results) == 5
    states_vals, outputs_vals, glimpses_vals, weights_vals, costs_vals = (
        theano.function([attended, attended_mask], results)
        (attended_vals, attended_mask_vals))
    assert states_vals.shape == (n_steps, batch_size, inp_dim)
    assert states_vals.shape == outputs_vals.shape
    assert glimpses_vals.shape == (n_steps, batch_size, attended_dim)
    assert weights_vals.shape == (n_steps, batch_size, attended_len)
    assert costs_vals.shape == (n_steps, batch_size)
開發者ID:madisonmay,項目名稱:blocks,代碼行數:84,代碼來源:test_sequence_generators.py

示例11: test_sequence_generator_with_lm

# 需要導入模塊: from blocks.bricks.sequence_generators import SequenceGenerator [as 別名]
# 或者: from blocks.bricks.sequence_generators.SequenceGenerator import cost [as 別名]
def test_sequence_generator_with_lm():
    floatX = theano.config.floatX
    rng = numpy.random.RandomState(1234)

    readout_dim = 5
    feedback_dim = 3
    dim = 20
    batch_size = 30
    n_steps = 10

    transition = GatedRecurrent(dim=dim, activation=Tanh(),
                                weights_init=Orthogonal())
    language_model = SequenceGenerator(
        Readout(readout_dim=readout_dim, source_names=["states"],
                emitter=SoftmaxEmitter(theano_seed=1234),
                feedback_brick=LookupFeedback(readout_dim, dim,
                                              name='feedback')),
        SimpleRecurrent(dim, Tanh()),
        name='language_model')
    generator = SequenceGenerator(
        Readout(readout_dim=readout_dim, source_names=["states", "lm_states"],
                emitter=SoftmaxEmitter(theano_seed=1234),
                feedback_brick=LookupFeedback(readout_dim,
                                              feedback_dim)),
        transition,
        language_model=language_model,
        weights_init=IsotropicGaussian(0.1), biases_init=Constant(0),
        seed=1234)
    generator.initialize()

    # Test 'cost_matrix' method
    y = tensor.lmatrix('y')
    y.tag.test_value = numpy.zeros((15, batch_size), dtype='int64')
    mask = tensor.matrix('mask')
    mask.tag.test_value = numpy.ones((15, batch_size))

    costs = generator.cost_matrix(y, mask)
    assert costs.ndim == 2
    costs_fun = theano.function([y, mask], [costs])
    y_test = rng.randint(readout_dim, size=(n_steps, batch_size))
    m_test = numpy.ones((n_steps, batch_size), dtype=floatX)
    costs_val = costs_fun(y_test, m_test)[0]
    assert costs_val.shape == (n_steps, batch_size)
    assert_allclose(costs_val.sum(), 483.153, rtol=1e-5)

    # Test 'cost' method
    cost = generator.cost(y, mask)
    assert cost.ndim == 0
    cost_val = theano.function([y, mask], cost)(y_test, m_test)
    assert_allclose(cost_val, 16.105, rtol=1e-5)

    # Test 'AUXILIARY' variable 'per_sequence_element' in 'cost' method
    cg = ComputationGraph([cost])
    var_filter = VariableFilter(roles=[AUXILIARY])
    aux_var_name = '_'.join([generator.name, generator.cost.name,
                             'per_sequence_element'])
    cost_per_el = [el for el in var_filter(cg.variables)
                   if el.name == aux_var_name][0]
    assert cost_per_el.ndim == 0
    cost_per_el_val = theano.function([y, mask], [cost_per_el])(y_test, m_test)
    assert_allclose(cost_per_el_val, 1.61051, rtol=1e-5)

    # Test generate
    states, outputs, lm_states, costs = generator.generate(
        iterate=True, batch_size=batch_size, n_steps=n_steps)
    cg = ComputationGraph([states, outputs, costs])
    states_val, outputs_val, costs_val = theano.function(
        [], [states, outputs, costs],
        updates=cg.updates)()
    assert states_val.shape == (n_steps, batch_size, dim)
    assert outputs_val.shape == (n_steps, batch_size)
    assert outputs_val.dtype == 'int64'
    assert costs_val.shape == (n_steps, batch_size)
    assert_allclose(states_val.sum(), -4.88367, rtol=1e-5)
    assert_allclose(costs_val.sum(), 486.681, rtol=1e-5)
    assert outputs_val.sum() == 627

    # Test masks agnostic results of cost
    cost1 = costs_fun([[1], [2]], [[1], [1]])[0]
    cost2 = costs_fun([[3, 1], [4, 2], [2, 0]],
                      [[1, 1], [1, 1], [1, 0]])[0]
    assert_allclose(cost1.sum(), cost2[:, 1].sum(), rtol=1e-5)
開發者ID:DingKe,項目名稱:attention-lvcsr,代碼行數:84,代碼來源:test_sequence_generators.py

示例12: ComputationGraph

# 需要導入模塊: from blocks.bricks.sequence_generators import SequenceGenerator [as 別名]
# 或者: from blocks.bricks.sequence_generators.SequenceGenerator import cost [as 別名]
    ),
    transition=ContextSimpleRecurrent(
        name='image',
        activation=Tanh(),
        dim=context_dim,
        weights_init=initialization.IsotropicGaussian(0.1)
    ),
    weights_init=initialization.IsotropicGaussian(0.1),
    biases_init=initialization.Constant(0.0))

generator.initialize()

x = tensor.matrix('image')
y = tensor.lmatrix('sequence')

cost = generator.cost(y, context=x)

cg = ComputationGraph([cost])

algorithm = GradientDescent(
    cost=cost,
    parameters=cg.parameters,
    step_rule=Adam()
)


from blocks.extensions import Timing, FinishAfter, Printing, ProgressBar
from blocks.extensions.monitoring import TrainingDataMonitoring
from blocks.extensions.saveload import Checkpoint
from fuel.streams import DataStream
from fuel.schemes import SequentialScheme
開發者ID:sharpfun,項目名稱:ss2016_dpnlp,代碼行數:33,代碼來源:train.py

示例13: main

# 需要導入模塊: from blocks.bricks.sequence_generators import SequenceGenerator [as 別名]
# 或者: from blocks.bricks.sequence_generators.SequenceGenerator import cost [as 別名]

#.........這裏部分代碼省略.........
		weights_init=IsotropicGaussian(0.01), 
		biases_init=Constant(0),
		name="generator",
		fork=Fork(
			[name for name in transition.apply.sequences if name != 'mask'], 
			prototype=Linear()),
		add_contexts=True)
	decoder.transition.weights_init = Orthogonal()

	#printchildren(encoder, 1)
	# Initialize model
	logger.info('Initializing model')
	embedder.initialize()
	transformer.initialize()
	encoder.initialize()
	decoder.initialize()
	
	# Apply model 
	embedded = embedder.apply(source_sentence)
	tansformed = transformer.apply(embedded)
	encoded = encoder.apply(tansformed)[0]
	generated = decoder.generate(
		n_steps=2*source_sentence.shape[1], 
		batch_size=source_sentence.shape[0], 
		attended = encoded.dimshuffle(1,0,2), 
		attended_mask=tensor.ones(source_sentence.shape).T
		)
	print 'Generated: ', generated
	# generator_generate_outputs
	#samples = generated[1] # For GRU 
	samples = generated[2] # For LSTM
	samples.name = 'samples'
	#samples_cost = generated[4] # For GRU 
	samples_cost = generated[5] # For LSTM
	samples_cost = 'sampling_cost'
	cost = decoder.cost(
		mask = target_sentence_mask.T, 
		outputs = target_sentence.T, 
		attended = encoded.dimshuffle(1,0,2), 
		attended_mask = source_sentence_mask.T)
	cost.name = 'target_cost'
	cost.tag.aggregation_scheme = TakeLast(cost)
	model = Model(cost)
	
	logger.info('Creating computational graph')
	cg = ComputationGraph(cost)
	
	# apply dropout for regularization
	if config['dropout'] < 1.0: # dropout is applied to the output of maxout in ghog
		logger.info('Applying dropout')
		dropout_inputs = [x for x in cg.intermediary_variables if x.name == 'maxout_apply_output']
		cg = apply_dropout(cg, dropout_inputs, config['dropout'])

	######## 
	# Print shapes
	shapes = [param.get_value().shape for param in cg.parameters]
	logger.info("Parameter shapes: ")
	for shape, count in Counter(shapes).most_common():
		logger.info('	{:15}: {}'.format(shape, count))
	logger.info("Total number of parameters: {}".format(len(shapes)))

	printchildren(embedder, 1)
	printchildren(transformer, 1)
	printchildren(encoder, 1)
	printchildren(decoder, 1)
	# Print parameter names
開發者ID:xlhdh,項目名稱:sp2016.11-731,代碼行數:70,代碼來源:train_time.py

示例14: main

# 需要導入模塊: from blocks.bricks.sequence_generators import SequenceGenerator [as 別名]
# 或者: from blocks.bricks.sequence_generators.SequenceGenerator import cost [as 別名]
def main(mode, save_path, steps, num_batches):
    num_states = MarkovChainDataset.num_states

    if mode == "train":
        # Experiment configuration
        rng = numpy.random.RandomState(1)
        batch_size = 50
        seq_len = 100
        dim = 10
        feedback_dim = 8

        # Build the bricks and initialize them
        transition = GatedRecurrent(name="transition", activation=Tanh(),
                                    dim=dim)
        generator = SequenceGenerator(
            LinearReadout(readout_dim=num_states, source_names=["states"],
                          emitter=SoftmaxEmitter(name="emitter"),
                          feedbacker=LookupFeedback(
                              num_states, feedback_dim, name='feedback'),
                          name="readout"),
            transition,
            weights_init=IsotropicGaussian(0.01), biases_init=Constant(0),
            name="generator")
        generator.push_initialization_config()
        transition.weights_init = Orthogonal()
        generator.initialize()

        # Give an idea of what's going on.
        logger.info("Parameters:\n" +
                    pprint.pformat(
                        [(key, value.get_value().shape) for key, value
                         in Selector(generator).get_params().items()],
                        width=120))
        logger.info("Markov chain entropy: {}".format(
            MarkovChainDataset.entropy))
        logger.info("Expected min error: {}".format(
            -MarkovChainDataset.entropy * seq_len))

        # Build the cost computation graph.
        x = tensor.lmatrix('data')
        cost = aggregation.mean(generator.cost(x[:, :]).sum(),
                                x.shape[1])
        cost.name = "sequence_log_likelihood"

        algorithm = GradientDescent(
            cost=cost, params=list(Selector(generator).get_params().values()),
            step_rule=Scale(0.001))
        main_loop = MainLoop(
            algorithm=algorithm,
            data_stream=DataStream(
                MarkovChainDataset(rng, seq_len),
                iteration_scheme=ConstantScheme(batch_size)),
            model=Model(cost),
            extensions=[FinishAfter(after_n_batches=num_batches),
                        TrainingDataMonitoring([cost], prefix="this_step",
                                               after_every_batch=True),
                        TrainingDataMonitoring([cost], prefix="average",
                                               every_n_batches=100),
                        SerializeMainLoop(save_path, every_n_batches=500),
                        Printing(every_n_batches=100)])
        main_loop.run()
    elif mode == "sample":
        main_loop = cPickle.load(open(save_path, "rb"))
        generator = main_loop.model

        sample = ComputationGraph(generator.generate(
            n_steps=steps, batch_size=1, iterate=True)).get_theano_function()

        states, outputs, costs = [data[:, 0] for data in sample()]

        numpy.set_printoptions(precision=3, suppress=True)
        print("Generation cost:\n{}".format(costs.sum()))

        freqs = numpy.bincount(outputs).astype(floatX)
        freqs /= freqs.sum()
        print("Frequencies:\n {} vs {}".format(freqs,
                                               MarkovChainDataset.equilibrium))

        trans_freqs = numpy.zeros((num_states, num_states), dtype=floatX)
        for a, b in zip(outputs, outputs[1:]):
            trans_freqs[a, b] += 1
        trans_freqs /= trans_freqs.sum(axis=1)[:, None]
        print("Transition frequencies:\n{}\nvs\n{}".format(
            trans_freqs, MarkovChainDataset.trans_prob))
    else:
        assert False
開發者ID:kelvinxu,項目名稱:blocks,代碼行數:88,代碼來源:main.py

示例15: test_sequence_generator

# 需要導入模塊: from blocks.bricks.sequence_generators import SequenceGenerator [as 別名]
# 或者: from blocks.bricks.sequence_generators.SequenceGenerator import cost [as 別名]
def test_sequence_generator():
    """Test a sequence generator with no contexts and continuous outputs.

    Such sequence generators can be used to model e.g. dynamical systems.

    """
    rng = numpy.random.RandomState(1234)

    output_dim = 1
    dim = 20
    batch_size = 30
    n_steps = 10

    transition = SimpleRecurrent(activation=Tanh(), dim=dim,
                                 weights_init=Orthogonal())
    generator = SequenceGenerator(
        Readout(readout_dim=output_dim, source_names=["states"],
                emitter=TestEmitter()),
        transition,
        weights_init=IsotropicGaussian(0.1), biases_init=Constant(0.0),
        seed=1234)
    generator.initialize()

    # Test 'cost_matrix' method
    y = tensor.tensor3('y')
    mask = tensor.matrix('mask')
    costs = generator.cost_matrix(y, mask)
    assert costs.ndim == 2
    y_test = rng.uniform(size=(n_steps, batch_size, output_dim)).astype(floatX)
    m_test = numpy.ones((n_steps, batch_size), dtype=floatX)
    costs_val = theano.function([y, mask], [costs])(y_test, m_test)[0]
    assert costs_val.shape == (n_steps, batch_size)
    assert_allclose(costs_val.sum(), 115.593, rtol=1e-5)

    # Test 'cost' method
    cost = generator.cost(y, mask)
    assert cost.ndim == 0
    cost_val = theano.function([y, mask], [cost])(y_test, m_test)
    assert_allclose(cost_val, 3.8531, rtol=1e-5)

    # Test 'AUXILIARY' variable 'per_sequence_element' in 'cost' method
    cg = ComputationGraph([cost])
    var_filter = VariableFilter(roles=[AUXILIARY])
    aux_var_name = '_'.join([generator.name, generator.cost.name,
                             'per_sequence_element'])
    cost_per_el = [el for el in var_filter(cg.variables)
                   if el.name == aux_var_name][0]
    assert cost_per_el.ndim == 0
    cost_per_el_val = theano.function([y, mask], [cost_per_el])(y_test, m_test)
    assert_allclose(cost_per_el_val, 0.38531, rtol=1e-5)

    # Test 'generate' method
    states, outputs, costs = [variable.eval() for variable in
                              generator.generate(
                                  states=rng.uniform(
                                      size=(batch_size, dim)).astype(floatX),
                                  iterate=True, batch_size=batch_size,
                                  n_steps=n_steps)]
    assert states.shape == (n_steps, batch_size, dim)
    assert outputs.shape == (n_steps, batch_size, output_dim)
    assert costs.shape == (n_steps, batch_size)
    assert_allclose(outputs.sum(), -0.33683, rtol=1e-5)
    assert_allclose(states.sum(), 15.7909, rtol=1e-5)
    # There is no generation cost in this case, since generation is
    # deterministic
    assert_allclose(costs.sum(), 0.0)
開發者ID:Fdenpc,項目名稱:blocks,代碼行數:68,代碼來源:test_sequence_generators.py


注:本文中的blocks.bricks.sequence_generators.SequenceGenerator.cost方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。