當前位置: 首頁>>代碼示例>>Python>>正文


Python StopWatch.wall_elapsed方法代碼示例

本文整理匯總了Python中autosklearn.util.StopWatch.wall_elapsed方法的典型用法代碼示例。如果您正苦於以下問題:Python StopWatch.wall_elapsed方法的具體用法?Python StopWatch.wall_elapsed怎麽用?Python StopWatch.wall_elapsed使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在autosklearn.util.StopWatch的用法示例。


在下文中一共展示了StopWatch.wall_elapsed方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: main

# 需要導入模塊: from autosklearn.util import StopWatch [as 別名]
# 或者: from autosklearn.util.StopWatch import wall_elapsed [as 別名]
    def main(self):

        watch = StopWatch()
        watch.start_task('ensemble_builder')

        used_time = 0
        time_iter = 0
        index_run = 0
        num_iteration = 0
        current_num_models = 0
        last_hash = None
        current_hash = None

        backend = Backend(self.output_dir, self.autosklearn_tmp_dir)
        dir_ensemble = os.path.join(self.autosklearn_tmp_dir,
                                    '.auto-sklearn',
                                    'predictions_ensemble')
        dir_valid = os.path.join(self.autosklearn_tmp_dir,
                                 '.auto-sklearn',
                                 'predictions_valid')
        dir_test = os.path.join(self.autosklearn_tmp_dir,
                                '.auto-sklearn',
                                'predictions_test')
        paths_ = [dir_ensemble, dir_valid, dir_test]

        dir_ensemble_list_mtimes = []

        self.logger.debug('Starting main loop with %f seconds and %d iterations '
                          'left.' % (self.limit - used_time, num_iteration))
        while used_time < self.limit or (self.max_iterations > 0 and
                                         self.max_iterations >= num_iteration):
            num_iteration += 1
            self.logger.debug('Time left: %f', self.limit - used_time)
            self.logger.debug('Time last ensemble building: %f', time_iter)

            # Reload the ensemble targets every iteration, important, because cv may
            # update the ensemble targets in the cause of running auto-sklearn
            # TODO update cv in order to not need this any more!
            targets_ensemble = backend.load_targets_ensemble()

            # Load the predictions from the models
            exists = [os.path.isdir(dir_) for dir_ in paths_]
            if not exists[0]:  # all(exists):
                self.logger.debug('Prediction directory %s does not exist!' %
                              dir_ensemble)
                time.sleep(2)
                used_time = watch.wall_elapsed('ensemble_builder')
                continue

            if self.shared_mode is False:
                dir_ensemble_list = sorted(glob.glob(os.path.join(
                    dir_ensemble, 'predictions_ensemble_%s_*.npy' % self.seed)))
                if exists[1]:
                    dir_valid_list = sorted(glob.glob(os.path.join(
                        dir_valid, 'predictions_valid_%s_*.npy' % self.seed)))
                else:
                    dir_valid_list = []
                if exists[2]:
                    dir_test_list = sorted(glob.glob(os.path.join(
                        dir_test, 'predictions_test_%s_*.npy' % self.seed)))
                else:
                    dir_test_list = []
            else:
                dir_ensemble_list = sorted(os.listdir(dir_ensemble))
                dir_valid_list = sorted(os.listdir(dir_valid)) if exists[1] else []
                dir_test_list = sorted(os.listdir(dir_test)) if exists[2] else []

            # Check the modification times because predictions can be updated
            # over time!
            old_dir_ensemble_list_mtimes = dir_ensemble_list_mtimes
            dir_ensemble_list_mtimes = []

            for dir_ensemble_file in dir_ensemble_list:
                if dir_ensemble_file.endswith("/"):
                    dir_ensemble_file = dir_ensemble_file[:-1]
                basename = os.path.basename(dir_ensemble_file)
                dir_ensemble_file = os.path.join(dir_ensemble, basename)
                mtime = os.path.getmtime(dir_ensemble_file)
                dir_ensemble_list_mtimes.append(mtime)

            if len(dir_ensemble_list) == 0:
                self.logger.debug('Directories are empty')
                time.sleep(2)
                used_time = watch.wall_elapsed('ensemble_builder')
                continue

            if len(dir_ensemble_list) <= current_num_models and \
                    old_dir_ensemble_list_mtimes == dir_ensemble_list_mtimes:
                self.logger.debug('Nothing has changed since the last time')
                time.sleep(2)
                used_time = watch.wall_elapsed('ensemble_builder')
                continue

            watch.start_task('index_run' + str(index_run))
            watch.start_task('ensemble_iter_' + str(num_iteration))

            # List of num_runs (which are in the filename) which will be included
            #  later
            include_num_runs = []
            backup_num_runs = []
#.........這裏部分代碼省略.........
開發者ID:Hanshan1988,項目名稱:auto-sklearn,代碼行數:103,代碼來源:ensemble_builder.py

示例2: main

# 需要導入模塊: from autosklearn.util import StopWatch [as 別名]
# 或者: from autosklearn.util.StopWatch import wall_elapsed [as 別名]
def main(autosklearn_tmp_dir,
         basename,
         task_type,
         metric,
         limit,
         output_dir,
         ensemble_size=None,
         ensemble_nbest=None,
         seed=1,
         shared_mode=False,
         max_iterations=-1,
         precision="32"):

    watch = StopWatch()
    watch.start_task('ensemble_builder')

    used_time = 0
    time_iter = 0
    index_run = 0
    num_iteration = 0
    current_num_models = 0

    backend = Backend(output_dir, autosklearn_tmp_dir)
    dir_ensemble = os.path.join(autosklearn_tmp_dir, '.auto-sklearn',
                                'predictions_ensemble')
    dir_valid = os.path.join(autosklearn_tmp_dir, '.auto-sklearn',
                             'predictions_valid')
    dir_test = os.path.join(autosklearn_tmp_dir, '.auto-sklearn',
                            'predictions_test')
    paths_ = [dir_ensemble, dir_valid, dir_test]

    targets_ensemble = backend.load_targets_ensemble()

    dir_ensemble_list_mtimes = []

    while used_time < limit or (max_iterations > 0 and max_iterations >= num_iteration):
        num_iteration += 1
        logger.debug('Time left: %f', limit - used_time)
        logger.debug('Time last iteration: %f', time_iter)

        # Load the predictions from the models
        exists = [os.path.isdir(dir_) for dir_ in paths_]
        if not exists[0]:  # all(exists):
            logger.debug('Prediction directory %s does not exist!' %
                          dir_ensemble)
            time.sleep(2)
            used_time = watch.wall_elapsed('ensemble_builder')
            continue

        if shared_mode is False:
            dir_ensemble_list = sorted(glob.glob(os.path.join(
                dir_ensemble, 'predictions_ensemble_%s_*.npy' % seed)))
            if exists[1]:
                dir_valid_list = sorted(glob.glob(os.path.join(
                    dir_valid, 'predictions_valid_%s_*.npy' % seed)))
            else:
                dir_valid_list = []
            if exists[2]:
                dir_test_list = sorted(glob.glob(os.path.join(
                    dir_test, 'predictions_test_%s_*.npy' % seed)))
            else:
                dir_test_list = []
        else:
            dir_ensemble_list = sorted(os.listdir(dir_ensemble))
            dir_valid_list = sorted(os.listdir(dir_valid)) if exists[1] else []
            dir_test_list = sorted(os.listdir(dir_test)) if exists[2] else []

        # Check the modification times because predictions can be updated
        # over time!
        old_dir_ensemble_list_mtimes = dir_ensemble_list_mtimes
        dir_ensemble_list_mtimes = []

        for dir_ensemble_file in dir_ensemble_list:
            dir_ensemble_file = os.path.join(dir_ensemble, dir_ensemble_file)
            mtime = os.path.getmtime(dir_ensemble_file)
            dir_ensemble_list_mtimes.append(mtime)

        if len(dir_ensemble_list) == 0:
            logger.debug('Directories are empty')
            time.sleep(2)
            used_time = watch.wall_elapsed('ensemble_builder')
            continue

        if len(dir_ensemble_list) <= current_num_models and \
                old_dir_ensemble_list_mtimes == dir_ensemble_list_mtimes:
            logger.debug('Nothing has changed since the last time')
            time.sleep(2)
            used_time = watch.wall_elapsed('ensemble_builder')
            continue

        watch.start_task('ensemble_iter_' + str(index_run))

        # List of num_runs (which are in the filename) which will be included
        #  later
        include_num_runs = []
        backup_num_runs = []
        model_and_automl_re = re.compile(r'_([0-9]*)_([0-9]*)\.npy$')
        if ensemble_nbest is not None:
            # Keeps track of the single scores of each model in our ensemble
            scores_nbest = []
#.........這裏部分代碼省略.........
開發者ID:ixtel,項目名稱:auto-sklearn,代碼行數:103,代碼來源:ensemble_selection_script.py

示例3: AutoML

# 需要導入模塊: from autosklearn.util import StopWatch [as 別名]
# 或者: from autosklearn.util.StopWatch import wall_elapsed [as 別名]

#.........這裏部分代碼省略.........
        # Check arguments prior to doing anything!
        if self._resampling_strategy not in ['holdout', 'holdout-iterative-fit',
                                             'cv', 'nested-cv', 'partial-cv']:
            raise ValueError('Illegal resampling strategy: %s' %
                             self._resampling_strategy)
        if self._resampling_strategy == 'partial-cv' and \
                self._ensemble_size != 0:
            raise ValueError("Resampling strategy partial-cv cannot be used "
                             "together with ensembles.")

        self._backend._make_internals_directory()
        if self._keep_models:
            try:
                os.mkdir(self._backend.get_model_dir())
            except OSError:
                self._logger.warning("model directory already exists")
                if not self._shared_mode:
                    raise

        self._metric = datamanager.info['metric']
        self._task = datamanager.info['task']
        self._label_num = datamanager.info['label_num']

        set_auto_seed(self._seed)

        # == Pickle the data manager, here, because no more global
        # OneHotEncoding
        data_manager_path = self._backend.save_datamanager(datamanager)

        self._save_ensemble_data(
            datamanager.data['X_train'],
            datamanager.data['Y_train'])

        time_for_load_data = self._stopwatch.wall_elapsed(self._dataset_name)

        if self._debug_mode:
            self._print_load_time(
                self._dataset_name,
                self._time_for_task,
                time_for_load_data,
                self._logger)

        # == Perform dummy predictions
        self._do_dummy_prediction(datamanager)

        # = Create a searchspace
        # Do this before One Hot Encoding to make sure that it creates a
        # search space for a dense classifier even if one hot encoding would
        # make it sparse (tradeoff; if one hot encoding would make it sparse,
        #  densifier and truncatedSVD would probably lead to a MemoryError,
        # like this we can't use some of the preprocessing methods in case
        # the data became sparse)
        self.configuration_space, configspace_path = _create_search_space(
            self._tmp_dir,
            datamanager.info,
            self._backend,
            self._stopwatch,
            self._logger,
            self._include_estimators,
            self._include_preprocessors)
        self.configuration_space_created_hook(datamanager)

        # == Calculate metafeatures
        meta_features = _calculate_metafeatures(
            data_feat_type=datamanager.feat_type,
            data_info_task=datamanager.info['task'],
開發者ID:stokasto,項目名稱:auto-sklearn,代碼行數:70,代碼來源:automl.py

示例4: main

# 需要導入模塊: from autosklearn.util import StopWatch [as 別名]
# 或者: from autosklearn.util.StopWatch import wall_elapsed [as 別名]
def main(logger, predictions_dir, basename, task_type, metric, limit, output_dir,
         ensemble_size=None):
    watch = StopWatch()
    watch.start_task('ensemble_builder')


    used_time = 0
    time_iter = 0
    index_run = 0
    current_num_models = 0

    while used_time < limit:
        logger.debug('Time left: %f' % (limit - used_time))
        logger.debug('Time last iteration: %f' % time_iter)
        # Load the true labels of the validation data
        true_labels = np.load(os.path.join(predictions_dir,
                                           'true_labels_ensemble.npy'))

        # Load the predictions from the models
        all_predictions_train = []
        dir_ensemble = os.path.join(predictions_dir, 'predictions_ensemble/')
        dir_valid = os.path.join(predictions_dir, 'predictions_valid/')
        dir_test = os.path.join(predictions_dir, 'predictions_test/')

        if not os.path.isdir(dir_ensemble) or not os.path.isdir(dir_valid) or \
                not os.path.isdir(dir_test):
            logger.debug('Prediction directory does not exist')
            time.sleep(2)
            used_time = watch.wall_elapsed('ensemble_builder')
            continue

        dir_ensemble_list = sorted(os.listdir(dir_ensemble))
        dir_valid_list = sorted(os.listdir(dir_valid))
        dir_test_list = sorted(os.listdir(dir_test))

        if check_data(logger, len(dir_ensemble_list), len(dir_valid_list),
                      len(dir_test_list), current_num_models):
            time.sleep(2)
            used_time = watch.wall_elapsed('ensemble_builder')
            continue

        watch.start_task('ensemble_iter_' + str(index_run))

        # Binary mask where True indicates that the corresponding will be
        # excluded from the ensemble
        exclude_mask = []
        if ensemble_size is not None:
            # Keeps track of the single scores of each model in our ensemble
            scores_nbest = []
            # The indices of the model that are currently in our ensemble
            indices_nbest = []

        model_idx = 0
        for f in dir_ensemble_list:
            predictions = np.load(os.path.join(dir_ensemble, f))
            score = calculate_score(true_labels, predictions,
                                              task_type, metric,
                                              predictions.shape[1])

            if ensemble_size is not None:
                if score <= 0.001:
                    exclude_mask.append(True)
                    logger.error('Model only predicts at random: ' + f +
                                  ' has score: ' + str(score))
                # If we have less model in our ensemble than ensemble_size add
                # the current model if it is better than random
                elif len(scores_nbest) < ensemble_size:
                    scores_nbest.append(score)
                    indices_nbest.append(model_idx)
                    exclude_mask.append(False)
                else:
                    # Take the worst performing model in our ensemble so far
                    idx = np.argmin(np.array([scores_nbest]))

                    # If the current model is better than the worst model in
                    # our ensemble replace it by the current model
                    if scores_nbest[idx] < score:
                        logger.debug(
                            'Worst model in our ensemble: %d with score %f will be replaced by model %d with score %f'
                            % (idx, scores_nbest[idx], model_idx, score))
                        scores_nbest[idx] = score
                        # Exclude the old model
                        exclude_mask[int(indices_nbest[idx])] = True
                        indices_nbest[idx] = model_idx
                        exclude_mask.append(False)
                    # Otherwise exclude the current model from the ensemble
                    else:
                        exclude_mask.append(True)

            else:
                # Load all predictions that are better than random
                if score <= 0.001:
                    exclude_mask.append(True)
                    logger.error('Model only predicts at random: ' + f +
                                  ' has score: ' + str(score))
                else:
                    exclude_mask.append(False)
                    all_predictions_train.append(predictions)

            model_idx += 1
#.........這裏部分代碼省略.........
開發者ID:WarmongeR1,項目名稱:auto-sklearn,代碼行數:103,代碼來源:ensemble_script.py

示例5: main

# 需要導入模塊: from autosklearn.util import StopWatch [as 別名]
# 或者: from autosklearn.util.StopWatch import wall_elapsed [as 別名]
def main(autosklearn_tmp_dir,
         dataset_name,
         task_type,
         metric,
         limit,
         output_dir,
         ensemble_size=None,
         ensemble_nbest=None,
         seed=1,
         shared_mode=False,
         max_iterations=-1,
         precision="32"):

    watch = StopWatch()
    watch.start_task('ensemble_builder')

    used_time = 0
    time_iter = 0
    index_run = 0
    num_iteration = 0
    current_num_models = 0

    backend = Backend(output_dir, autosklearn_tmp_dir)
    dir_ensemble = os.path.join(autosklearn_tmp_dir, '.auto-sklearn',
                                'predictions_ensemble')
    dir_valid = os.path.join(autosklearn_tmp_dir, '.auto-sklearn',
                             'predictions_valid')
    dir_test = os.path.join(autosklearn_tmp_dir, '.auto-sklearn',
                            'predictions_test')
    paths_ = [dir_ensemble, dir_valid, dir_test]

    dir_ensemble_list_mtimes = []

    while used_time < limit or (max_iterations > 0 and max_iterations >= num_iteration):
        num_iteration += 1
        logger.debug('Time left: %f', limit - used_time)
        logger.debug('Time last iteration: %f', time_iter)

        # Reload the ensemble targets every iteration, important, because cv may
        # update the ensemble targets in the cause of running auto-sklearn
        # TODO update cv in order to not need this any more!
        targets_ensemble = backend.load_targets_ensemble()

        # Load the predictions from the models
        exists = [os.path.isdir(dir_) for dir_ in paths_]
        if not exists[0]:  # all(exists):
            logger.debug('Prediction directory %s does not exist!' %
                          dir_ensemble)
            time.sleep(2)
            used_time = watch.wall_elapsed('ensemble_builder')
            continue

        if shared_mode is False:
            dir_ensemble_list = sorted(glob.glob(os.path.join(
                dir_ensemble, 'predictions_ensemble_%s_*.npy' % seed)))
            if exists[1]:
                dir_valid_list = sorted(glob.glob(os.path.join(
                    dir_valid, 'predictions_valid_%s_*.npy' % seed)))
            else:
                dir_valid_list = []
            if exists[2]:
                dir_test_list = sorted(glob.glob(os.path.join(
                    dir_test, 'predictions_test_%s_*.npy' % seed)))
            else:
                dir_test_list = []
        else:
            dir_ensemble_list = sorted(os.listdir(dir_ensemble))
            dir_valid_list = sorted(os.listdir(dir_valid)) if exists[1] else []
            dir_test_list = sorted(os.listdir(dir_test)) if exists[2] else []

        # Check the modification times because predictions can be updated
        # over time!
        old_dir_ensemble_list_mtimes = dir_ensemble_list_mtimes
        dir_ensemble_list_mtimes = []

        for dir_ensemble_file in dir_ensemble_list:
            if dir_ensemble_file.endswith("/"):
                dir_ensemble_file = dir_ensemble_file[:-1]
            basename = os.path.basename(dir_ensemble_file)
            dir_ensemble_file = os.path.join(dir_ensemble, basename)
            mtime = os.path.getmtime(dir_ensemble_file)
            dir_ensemble_list_mtimes.append(mtime)

        if len(dir_ensemble_list) == 0:
            logger.debug('Directories are empty')
            time.sleep(2)
            used_time = watch.wall_elapsed('ensemble_builder')
            continue

        if len(dir_ensemble_list) <= current_num_models and \
                old_dir_ensemble_list_mtimes == dir_ensemble_list_mtimes:
            logger.debug('Nothing has changed since the last time')
            time.sleep(2)
            used_time = watch.wall_elapsed('ensemble_builder')
            continue

        watch.start_task('ensemble_iter_' + str(index_run))

        # List of num_runs (which are in the filename) which will be included
        #  later
#.........這裏部分代碼省略.........
開發者ID:Allen1203,項目名稱:auto-sklearn,代碼行數:103,代碼來源:ensemble_selection_script.py

示例6: AutoML

# 需要導入模塊: from autosklearn.util import StopWatch [as 別名]
# 或者: from autosklearn.util.StopWatch import wall_elapsed [as 別名]

#.........這裏部分代碼省略.........
            self._debug(part)

        return self._fit(loaded_data_manager)

    def _save_data_manager(self, data_d, tmp_dir, basename, watcher):
        task_name = 'StoreDatamanager'

        watcher.start_task(task_name)

        filepath = os.path.join(tmp_dir, basename + '_Manager.pkl')

        if _check_path_for_save(filepath, 'Data manager ', self._debug):
            pickle.dump(data_d, open(filepath, 'w'), protocol=-1)

        watcher.stop_task(task_name)
        return filepath

    def _fit(self, manager):
        # TODO: check that data and task definition fit together!

        self._metric = manager.info['metric']
        self._task = manager.info['task']
        self._target_num = manager.info['target_num']

        set_auto_seed(self._seed)

        # load data
        _save_ensemble_data(
            manager.data['X_train'],
            manager.data['Y_train'],
            self._tmp_dir,
            self._stopwatch)

        time_for_load_data = self._stopwatch.wall_elapsed(self._basename)

        if self._debug_mode:
            _print_load_time(
                self._basename,
                self._time_for_task,
                time_for_load_data,
                self._info)

        # == Calculate metafeatures
        meta_features = _calculate_meta_features(
            data_feat_type=manager.feat_type,
            data_info_task=manager.info['task'], basename=self._basename,
            metalearning_cnt=self._initial_configurations_via_metalearning,
            x_train=manager.data['X_train'], y_train=manager.data['Y_train'],
            watcher=self._stopwatch, log_function=self._debug)

        self._stopwatch.start_task('OneHot')
        manager.perform_hot_encoding()
        self._ohe = manager.encoder
        self._stopwatch.stop_task('OneHot')

        # == Pickle the data manager
        data_manager_path = self._save_data_manager(
            manager,
            self._tmp_dir,
            self._basename,
            watcher=self._stopwatch)

        # = Create a searchspace
        self._configuration_space, configspace_path = _create_search_space(
            self._tmp_dir,
            manager.info,
開發者ID:WarmongeR1,項目名稱:auto-sklearn,代碼行數:70,代碼來源:automl.py

示例7: AutoML

# 需要導入模塊: from autosklearn.util import StopWatch [as 別名]
# 或者: from autosklearn.util.StopWatch import wall_elapsed [as 別名]

#.........這裏部分代碼省略.........
                                             'cv', 'nested-cv', 'partial-cv']:
            raise ValueError('Illegal resampling strategy: %s' %
                             self._resampling_strategy)
        if self._resampling_strategy == 'partial-cv' and \
                self._ensemble_size != 0:
            raise ValueError("Resampling strategy partial-cv cannot be used "
                             "together with ensembles.")

        acquisition_functions = ['EI', 'EIPS']
        if self.acquisition_function not in acquisition_functions:
            raise ValueError('Illegal acquisition %s: Must be one of %s.' %
                             (self.acquisition_function, acquisition_functions))

        self._backend._make_internals_directory()
        if self._keep_models:
            try:
                os.mkdir(self._backend.get_model_dir())
            except OSError:
                self._logger.warning("model directory already exists")
                if not self._shared_mode:
                    raise

        self._metric = datamanager.info['metric']
        self._task = datamanager.info['task']
        self._label_num = datamanager.info['label_num']

        # == Pickle the data manager to speed up loading
        data_manager_path = self._backend.save_datamanager(datamanager)

        self._save_ensemble_data(
            datamanager.data['X_train'],
            datamanager.data['Y_train'])

        time_for_load_data = self._stopwatch.wall_elapsed(self._dataset_name)

        if self._debug_mode:
            self._print_load_time(
                self._dataset_name,
                self._time_for_task,
                time_for_load_data,
                self._logger)

        # == Perform dummy predictions
        num_run = 1
        #if self._resampling_strategy in ['holdout', 'holdout-iterative-fit']:
        num_run = self._do_dummy_prediction(datamanager, num_run)

        # = Create a searchspace
        # Do this before One Hot Encoding to make sure that it creates a
        # search space for a dense classifier even if one hot encoding would
        # make it sparse (tradeoff; if one hot encoding would make it sparse,
        #  densifier and truncatedSVD would probably lead to a MemoryError,
        # like this we can't use some of the preprocessing methods in case
        # the data became sparse)
        self.configuration_space, configspace_path = self._create_search_space(
            self._tmp_dir,
            self._backend,
            datamanager,
            self._include_estimators,
            self._include_preprocessors)

        # == RUN ensemble builder
        # Do this before calculating the meta-features to make sure that the
        # dummy predictions are actually included in the ensemble even if
        # calculating the meta-features takes very long
        ensemble_task_name = 'runEnsemble'
開發者ID:Ayaro,項目名稱:auto-sklearn,代碼行數:70,代碼來源:automl.py

示例8: main

# 需要導入模塊: from autosklearn.util import StopWatch [as 別名]
# 或者: from autosklearn.util.StopWatch import wall_elapsed [as 別名]
def main(logger,
         predictions_dir,
         basename,
         task_type,
         metric,
         limit,
         output_dir,
         ensemble_size=None,
         seed=1,
         indices_output_dir='.'):

    watch = StopWatch()
    watch.start_task('ensemble_builder')

    task_type = STRING_TO_TASK_TYPES[task_type]

    used_time = 0
    time_iter = 0
    index_run = 0
    current_num_models = 0

    dir_ensemble = join(predictions_dir, 'predictions_ensemble_%s/' % seed)
    dir_valid = join(predictions_dir, 'predictions_valid_%s/' % seed)
    dir_test = join(predictions_dir, 'predictions_test_%s/' % seed)
    paths_ = [dir_ensemble, dir_valid, dir_test]

    tru_labels_path = join(predictions_dir, 'true_labels_ensemble.npy')

    while used_time < limit:
        logger.debug('Time left: %f', limit - used_time)
        logger.debug('Time last iteration: %f', time_iter)
        # Load the true labels of the validation data
        true_labels = np.load(tru_labels_path)

        # Load the predictions from the models
        exists = [os.path.isdir(dir_) for dir_ in paths_]
        if not exists[0]:  # all(exists):
            logger.debug('Prediction directory %s does not exist!' %
                          dir_ensemble)
            time.sleep(2)
            used_time = watch.wall_elapsed('ensemble_builder')
            continue

        dir_ensemble_list = sorted(os.listdir(dir_ensemble))
        dir_valid_list = sorted(os.listdir(dir_valid)) if exists[1] else []
        dir_test_list = sorted(os.listdir(dir_test)) if exists[2] else []

        if check_data(logger, len(dir_ensemble_list), current_num_models):
            time.sleep(2)
            used_time = watch.wall_elapsed('ensemble_builder')
            continue

        watch.start_task('ensemble_iter_' + str(index_run))

        # List of num_runs (which are in the filename) which will be included
        #  later
        include_num_runs = []
        re_num_run = re.compile(r'_([0-9]*)\.npy$')
        if ensemble_size is not None:
            # Keeps track of the single scores of each model in our ensemble
            scores_nbest = []
            # The indices of the model that are currently in our ensemble
            indices_nbest = []
            # The names of the models
            model_names = []
            # The num run of the models
            num_runs = []

        model_names_to_scores = dict()

        model_idx = 0
        for model_name in dir_ensemble_list:
            predictions = np.load(os.path.join(dir_ensemble, model_name))
            score = calculate_score(true_labels, predictions,
                                              task_type, metric,
                                              predictions.shape[1])
            model_names_to_scores[model_name] = score
            num_run = int(re_num_run.search(model_name).group(1))

            if ensemble_size is not None:
                if score <= 0.001:
                    # include_num_runs.append(True)
                    logger.error('Model only predicts at random: ' +
                                  model_name + ' has score: ' + str(score))
                # If we have less models in our ensemble than ensemble_size add
                # the current model if it is better than random
                elif len(scores_nbest) < ensemble_size:
                    scores_nbest.append(score)
                    indices_nbest.append(model_idx)
                    include_num_runs.append(num_run)
                    model_names.append(model_name)
                    num_runs.append(num_run)
                else:
                    # Take the worst performing model in our ensemble so far
                    idx = np.argmin(np.array([scores_nbest]))

                    # If the current model is better than the worst model in
                    # our ensemble replace it by the current model
                    if scores_nbest[idx] < score:
                        logger.debug('Worst model in our ensemble: %s with '
#.........這裏部分代碼省略.........
開發者ID:WarmongeR1,項目名稱:auto-sklearn,代碼行數:103,代碼來源:ensemble_selection_script.py

示例9: AutoML

# 需要導入模塊: from autosklearn.util import StopWatch [as 別名]
# 或者: from autosklearn.util.StopWatch import wall_elapsed [as 別名]

#.........這裏部分代碼省略.........
        if self._resampling_strategy not in ['holdout', 'holdout-iterative-fit',
                                             'cv', 'nested-cv', 'partial-cv']:
            raise ValueError('Illegal resampling strategy: %s' %
                             self._resampling_strategy)
        if self._resampling_strategy == 'partial-cv' and \
                self._ensemble_size != 0:
            raise ValueError("Resampling strategy partial-cv cannot be used "
                             "together with ensembles.")

        acquisition_functions = ['EI', 'EIPS']
        if self.acquisition_function not in acquisition_functions:
            raise ValueError('Illegal acquisition %s: Must be one of %s.' %
                             (self.acquisition_function, acquisition_functions))

        self._backend._make_internals_directory()
        if self._keep_models:
            try:
                os.mkdir(self._backend.get_model_dir())
            except OSError:
                if not self._shared_mode:
                    raise

        self._metric = datamanager.info['metric']
        self._task = datamanager.info['task']
        self._label_num = datamanager.info['label_num']

        # == Pickle the data manager to speed up loading
        data_manager_path = self._backend.save_datamanager(datamanager)

        self._save_ensemble_data(
            datamanager.data['X_train'],
            datamanager.data['Y_train'])

        time_for_load_data = self._stopwatch.wall_elapsed(self._dataset_name)

        if self._debug_mode:
            self._print_load_time(
                self._dataset_name,
                self._time_for_task,
                time_for_load_data,
                self._logger)

        # == Perform dummy predictions
        num_run = 1
        #if self._resampling_strategy in ['holdout', 'holdout-iterative-fit']:
        num_run = self._do_dummy_prediction(datamanager, num_run)

        # = Create a searchspace
        # Do this before One Hot Encoding to make sure that it creates a
        # search space for a dense classifier even if one hot encoding would
        # make it sparse (tradeoff; if one hot encoding would make it sparse,
        #  densifier and truncatedSVD would probably lead to a MemoryError,
        # like this we can't use some of the preprocessing methods in case
        # the data became sparse)
        self.configuration_space, configspace_path = self._create_search_space(
            self._backend.temporary_directory,
            self._backend,
            datamanager,
            self._include_estimators,
            self._include_preprocessors)

        # == RUN ensemble builder
        # Do this before calculating the meta-features to make sure that the
        # dummy predictions are actually included in the ensemble even if
        # calculating the meta-features takes very long
        ensemble_task_name = 'runEnsemble'
開發者ID:automl,項目名稱:auto-sklearn,代碼行數:70,代碼來源:automl.py

示例10: AutoML

# 需要導入模塊: from autosklearn.util import StopWatch [as 別名]
# 或者: from autosklearn.util.StopWatch import wall_elapsed [as 別名]

#.........這裏部分代碼省略.........
        if self._resampling_strategy not in [
             'holdout', 'holdout-iterative-fit',
             'cv', 'partial-cv',
             'partial-cv-iterative-fit'] \
             and not issubclass(self._resampling_strategy, BaseCrossValidator)\
             and not issubclass(self._resampling_strategy, _RepeatedSplits)\
             and not issubclass(self._resampling_strategy, BaseShuffleSplit):
            raise ValueError('Illegal resampling strategy: %s' %
                             self._resampling_strategy)
        if self._resampling_strategy in ['partial-cv', 'partial-cv-iterative-fit'] \
                and self._ensemble_size != 0:
            raise ValueError("Resampling strategy %s cannot be used "
                             "together with ensembles." % self._resampling_strategy)
        if self._resampling_strategy in ['partial-cv', 'cv',
                                         'partial-cv-iterative-fit'] and \
                not 'folds' in self._resampling_strategy_arguments:
            self._resampling_strategy_arguments['folds'] = 5

        self._backend._make_internals_directory()
        if self._keep_models:
            try:
                os.makedirs(self._backend.get_model_dir())
            except (OSError, FileExistsError) as e:
                if not self._shared_mode:
                    raise

        self._metric = metric
        self._task = datamanager.info['task']
        self._label_num = datamanager.info['label_num']

        # == Pickle the data manager to speed up loading
        data_manager_path = self._backend.save_datamanager(datamanager)

        time_for_load_data = self._stopwatch.wall_elapsed(self._dataset_name)

        if self._debug_mode:
            self._print_load_time(
                self._dataset_name,
                self._time_for_task,
                time_for_load_data,
                self._logger)

        # == Perform dummy predictions
        num_run = 1
        #if self._resampling_strategy in ['holdout', 'holdout-iterative-fit']:
        num_run = self._do_dummy_prediction(datamanager, num_run)

        # = Create a searchspace
        # Do this before One Hot Encoding to make sure that it creates a
        # search space for a dense classifier even if one hot encoding would
        # make it sparse (tradeoff; if one hot encoding would make it sparse,
        #  densifier and truncatedSVD would probably lead to a MemoryError,
        # like this we can't use some of the preprocessing methods in case
        # the data became sparse)
        self.configuration_space, configspace_path = self._create_search_space(
            self._backend.temporary_directory,
            self._backend,
            datamanager,
            include_estimators=self._include_estimators,
            exclude_estimators=self._exclude_estimators,
            include_preprocessors=self._include_preprocessors,
            exclude_preprocessors=self._exclude_preprocessors)
        if only_return_configuration_space:
            return self.configuration_space

        # == RUN ensemble builder
開發者ID:Bryan-LL,項目名稱:auto-sklearn,代碼行數:70,代碼來源:automl.py


注:本文中的autosklearn.util.StopWatch.wall_elapsed方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。