當前位置: 首頁>>代碼示例>>Python>>正文


Python util.StopWatch類代碼示例

本文整理匯總了Python中autosklearn.util.StopWatch的典型用法代碼示例。如果您正苦於以下問題:Python StopWatch類的具體用法?Python StopWatch怎麽用?Python StopWatch使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。


在下文中一共展示了StopWatch類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

    def __init__(self,
                 tmp_dir,
                 output_dir,
                 time_left_for_this_task,
                 per_run_time_limit,
                 log_dir=None,
                 initial_configurations_via_metalearning=25,
                 ensemble_size=1,
                 ensemble_nbest=1,
                 seed=1,
                 ml_memory_limit=3000,
                 metadata_directory=None,
                 queue=None,
                 keep_models=True,
                 debug_mode=False,
                 include_estimators=None,
                 include_preprocessors=None,
                 resampling_strategy='holdout',
                 resampling_strategy_arguments=None,
                 delete_tmp_folder_after_terminate=False,
                 delete_output_folder_after_terminate=False,
                 shared_mode=False):
        super(AutoML, self).__init__()

        self._tmp_dir = tmp_dir
        self._output_dir = output_dir
        self._time_for_task = time_left_for_this_task
        self._per_run_time_limit = per_run_time_limit
        self._log_dir = log_dir if log_dir is not None else self._tmp_dir
        self._initial_configurations_via_metalearning = \
            initial_configurations_via_metalearning
        self._ensemble_size = ensemble_size
        self._ensemble_nbest = ensemble_nbest
        self._seed = seed
        self._ml_memory_limit = ml_memory_limit
        self._metadata_directory = metadata_directory
        self._queue = queue
        self._keep_models = keep_models
        self._include_estimators = include_estimators
        self._include_preprocessors = include_preprocessors
        self._resampling_strategy = resampling_strategy
        self._resampling_strategy_arguments = resampling_strategy_arguments
        self.delete_tmp_folder_after_terminate = \
            delete_tmp_folder_after_terminate
        self.delete_output_folder_after_terminate = \
            delete_output_folder_after_terminate
        self._shared_mode = shared_mode

        self._datamanager = None
        self._dataset_name = None
        self._stopwatch = StopWatch()
        self._logger = None
        self._task = None
        self._metric = None
        self._label_num = None
        self.models_ = None
        self.ensemble_indices_ = None

        self._debug_mode = debug_mode
        self._backend = Backend(self._output_dir, self._tmp_dir)
開發者ID:Mahgoobi,項目名稱:auto-sklearn,代碼行數:60,代碼來源:automl.py

示例2: fit

    def fit(self, X, y,
            task=MULTICLASS_CLASSIFICATION,
            metric='acc_metric',
            feat_type=None,
            dataset_name=None):
        if dataset_name is None:
            m = hashlib.md5()
            m.update(X.data)
            dataset_name = m.hexdigest()

        self._backend.save_start_time(self._seed)
        self._stopwatch = StopWatch()
        self._dataset_name = dataset_name
        self._stopwatch.start_task(self._dataset_name)

        logger_name = 'AutoML(%d):%s' % (self._seed, dataset_name)
        setup_logger(os.path.join(self._tmp_dir, '%s.log' % str(logger_name)))
        self._logger = get_logger(logger_name)

        if isinstance(metric, str):
            metric = STRING_TO_METRIC[metric]

        loaded_data_manager = XYDataManager(X, y,
                                            task=task,
                                            metric=metric,
                                            feat_type=feat_type,
                                            dataset_name=dataset_name,
                                            encode_labels=False)

        return self._fit(loaded_data_manager)
開發者ID:Mahgoobi,項目名稱:auto-sklearn,代碼行數:30,代碼來源:automl.py

示例3: fit

    def fit(self, X, y, task=MULTICLASS_CLASSIFICATION, metric="acc_metric", feat_type=None, dataset_name=None):
        if dataset_name is None:
            m = hashlib.md5()
            m.update(X.data)
            dataset_name = m.hexdigest()

        self._backend.save_start_time(self._seed)
        self._stopwatch = StopWatch()
        self._dataset_name = dataset_name
        self._stopwatch.start_task(self._dataset_name)

        logger_name = "AutoML(%d):%s" % (self._seed, dataset_name)
        setup_logger(os.path.join(self._tmp_dir, "%s.log" % str(logger_name)))
        self._logger = get_logger(logger_name)

        if isinstance(metric, str):
            metric = STRING_TO_METRIC[metric]

        if feat_type is not None and len(feat_type) != X.shape[1]:
            raise ValueError(
                "Array feat_type does not have same number of "
                "variables as X has features. %d vs %d." % (len(feat_type), X.shape[1])
            )
        if feat_type is not None and not all([isinstance(f, bool) for f in feat_type]):
            raise ValueError("Array feat_type must only contain bools.")

        loaded_data_manager = XYDataManager(
            X, y, task=task, metric=metric, feat_type=feat_type, dataset_name=dataset_name, encode_labels=False
        )

        return self._fit(loaded_data_manager)
開發者ID:ixtel,項目名稱:auto-sklearn,代碼行數:31,代碼來源:automl.py

示例4: fit_on_datamanager

    def fit_on_datamanager(self, datamanager, metric):
        self._stopwatch = StopWatch()
        self._backend.save_start_time(self._seed)

        name = os.path.basename(datamanager.name)
        self._stopwatch.start_task(name)
        self._start_task(self._stopwatch, name)
        self._dataset_name = name

        self._logger = self._get_logger(name)
        self._fit(datamanager, metric)
開發者ID:Bryan-LL,項目名稱:auto-sklearn,代碼行數:11,代碼來源:automl.py

示例5: fit

    def fit(self, X, y,
            task=MULTICLASS_CLASSIFICATION,
            metric='acc_metric',
            feat_type=None,
            dataset_name=None):
        if not self._shared_mode:
            self._backend.context.delete_directories()
        else:
            # If this fails, it's likely that this is the first call to get
            # the data manager
            try:
                D = self._backend.load_datamanager()
                dataset_name = D.name
            except IOError:
                pass

        self._backend.context.create_directories()

        if dataset_name is None:
            dataset_name = hash_numpy_array(X)

        self._backend.save_start_time(self._seed)
        self._stopwatch = StopWatch()
        self._dataset_name = dataset_name
        self._stopwatch.start_task(self._dataset_name)

        self._logger = self._get_logger(dataset_name)

        if isinstance(metric, str):
            metric = STRING_TO_METRIC[metric]

        if feat_type is not None and len(feat_type) != X.shape[1]:
            raise ValueError('Array feat_type does not have same number of '
                             'variables as X has features. %d vs %d.' %
                             (len(feat_type), X.shape[1]))
        if feat_type is not None and not all([isinstance(f, str)
                                              for f in feat_type]):
            raise ValueError('Array feat_type must only contain strings.')
        if feat_type is not None:
            for ft in feat_type:
                if ft.lower() not in ['categorical', 'numerical']:
                    raise ValueError('Only `Categorical` and `Numerical` are '
                                     'valid feature types, you passed `%s`' % ft)

        self._data_memory_limit = None
        loaded_data_manager = XYDataManager(X, y,
                                            task=task,
                                            metric=metric,
                                            feat_type=feat_type,
                                            dataset_name=dataset_name,
                                            encode_labels=False)

        return self._fit(loaded_data_manager)
開發者ID:automl,項目名稱:auto-sklearn,代碼行數:53,代碼來源:automl.py

示例6: run

    def run(self):
        if self._parser is None:
            raise ValueError('You must invoke run() only via start_automl()')
        self._backend.save_start_time(self._seed)
        self._stopwatch = StopWatch()
        datamanager = get_data_manager(namespace=self._parser)
        self._stopwatch.start_task(datamanager.name)

        self._logger = self._get_logger(datamanager.name)

        self._datamanager = datamanager
        self._dataset_name = datamanager.name
        self._fit(self._datamanager)
開發者ID:Ayaro,項目名稱:auto-sklearn,代碼行數:13,代碼來源:automl.py

示例7: start_automl

    def start_automl(self, parser):
        self._backend.save_start_time(self._seed)
        self._stopwatch = StopWatch()
        datamanager = get_data_manager(namespace=parser)
        self._stopwatch.start_task(datamanager.name)

        logger_name = 'AutoML(%d):%s' % (self._seed, datamanager.name)
        setup_logger(os.path.join(self._tmp_dir, '%s.log' % str(logger_name)))
        self._logger = get_logger(logger_name)

        self._datamanager = datamanager
        self._dataset_name = datamanager.name
        self.start()
開發者ID:stokasto,項目名稱:auto-sklearn,代碼行數:13,代碼來源:automl.py

示例8: test_stopwatch_overhead

    def test_stopwatch_overhead(self):

        # Wall Overhead
        start = time.time()
        cpu_start = time.clock()
        watch = StopWatch()
        for i in range(1, 1000):
            watch.start_task('task_%d' % i)
            watch.stop_task('task_%d' % i)
        cpu_stop = time.clock()
        stop = time.time()
        dur = stop - start
        cpu_dur = cpu_stop - cpu_start
        cpu_overhead = cpu_dur - watch.cpu_sum()
        wall_overhead = dur - watch.wall_sum()

        self.assertLess(cpu_overhead, 1)
        self.assertLess(wall_overhead, 1)
        self.assertLess(watch.cpu_sum(), 2 * watch.wall_sum())
開發者ID:Bryan-LL,項目名稱:auto-sklearn,代碼行數:19,代碼來源:test_StopWatch.py

示例9: fit

    def fit(self, X, y,
            task=MULTICLASS_CLASSIFICATION,
            metric='acc_metric',
            feat_type=None,
            dataset_name=None):
        if dataset_name is None:
            m = hashlib.md5()
            m.update(X.data)
            dataset_name = m.hexdigest()

        self._backend.save_start_time(self._seed)
        self._stopwatch = StopWatch()
        self._dataset_name = dataset_name
        self._stopwatch.start_task(self._dataset_name)

        logger_name = 'AutoML(%d):%s' % (self._seed, dataset_name)
        setup_logger(os.path.join(self._tmp_dir, '%s.log' % str(logger_name)))
        self._logger = get_logger(logger_name)

        if isinstance(metric, str):
            metric = STRING_TO_METRIC[metric]

        if feat_type is not None and len(feat_type) != X.shape[1]:
            raise ValueError('Array feat_type does not have same number of '
                             'variables as X has features. %d vs %d.' %
                             (len(feat_type), X.shape[1]))
        if feat_type is not None and not all([isinstance(f, str)
                                              for f in feat_type]):
            raise ValueError('Array feat_type must only contain strings.')
        if feat_type is not None:
            for ft in feat_type:
                if ft.lower() not in ['categorical', 'numerical']:
                    raise ValueError('Only `Categorical` and `Numerical` are '
                                     'valid feature types, you passed `%s`' % ft)

        loaded_data_manager = XYDataManager(X, y,
                                            task=task,
                                            metric=metric,
                                            feat_type=feat_type,
                                            dataset_name=dataset_name,
                                            encode_labels=False)

        return self._fit(loaded_data_manager)
開發者ID:Allen1203,項目名稱:auto-sklearn,代碼行數:43,代碼來源:automl.py

示例10: fit_automl_dataset

    def fit_automl_dataset(self, basename, input_dir):
        # == Creating a data object with data and information about it
        self._basename = basename

        self._stopwatch = StopWatch()
        self._stopwatch.start_task(self._basename)

        self._logger = get_automl_logger(self._log_dir, self._basename,
                                         self._seed)

        self._debug('======== Reading and converting data ==========')
        # Encoding the labels will be done after the metafeature calculation!
        loaded_data_manager = CompetitionDataManager(self._basename, input_dir,
                                                     verbose=True,
                                                     encode_labels=False)
        loaded_data_manager_str = str(loaded_data_manager).split('\n')
        for part in loaded_data_manager_str:
            self._debug(part)

        return self._fit(loaded_data_manager)
開發者ID:WarmongeR1,項目名稱:auto-sklearn,代碼行數:20,代碼來源:automl.py

示例11: fit_automl_dataset

    def fit_automl_dataset(self, dataset, metric):
        self._stopwatch = StopWatch()
        self._backend.save_start_time(self._seed)

        name = os.path.basename(dataset)
        self._stopwatch.start_task(name)
        self._start_task(self._stopwatch, name)
        self._dataset_name = name

        self._logger = self._get_logger(name)
        self._logger.debug('======== Reading and converting data ==========')
        # Encoding the labels will be done after the metafeature calculation!
        self._data_memory_limit = float(self._ml_memory_limit) / 3
        loaded_data_manager = CompetitionDataManager(
            dataset, max_memory_in_mb=self._data_memory_limit)
        loaded_data_manager_str = str(loaded_data_manager).split('\n')
        for part in loaded_data_manager_str:
            self._logger.debug(part)

        return self._fit(loaded_data_manager, metric)
開發者ID:Bryan-LL,項目名稱:auto-sklearn,代碼行數:20,代碼來源:automl.py

示例12: fit_automl_dataset

    def fit_automl_dataset(self, dataset):
        self._stopwatch = StopWatch()
        self._backend.save_start_time(self._seed)

        name = os.path.basename(dataset)
        self._stopwatch.start_task(name)
        self._start_task(self._stopwatch, name)
        self._dataset_name = name

        logger_name = 'AutoML(%d):%s' % (self._seed, name)
        setup_logger(os.path.join(self._tmp_dir, '%s.log' % str(logger_name)))
        self._logger = get_logger(logger_name)

        self._logger.debug('======== Reading and converting data ==========')
        # Encoding the labels will be done after the metafeature calculation!
        loaded_data_manager = CompetitionDataManager(dataset,
                                                     encode_labels=False)
        loaded_data_manager_str = str(loaded_data_manager).split('\n')
        for part in loaded_data_manager_str:
            self._logger.debug(part)

        return self._fit(loaded_data_manager)
開發者ID:chrinide,項目名稱:auto-sklearn,代碼行數:22,代碼來源:automl.py

示例13: fit

    def fit(self, data_x, y,
            task=MULTICLASS_CLASSIFICATION,
            metric='acc_metric',
            feat_type=None,
            dataset_name=None):
        if dataset_name is None:
            m = hashlib.md5()
            m.update(data_x.data)
            dataset_name = m.hexdigest()

        self._basename = dataset_name

        self._stopwatch = StopWatch()
        self._stopwatch.start_task(self._basename)

        loaded_data_manager = XYDataManager(data_x, y,
                                            task=task,
                                            metric=metric,
                                            feat_type=feat_type,
                                            dataset_name=dataset_name,
                                            encode_labels=False)

        return self._fit(loaded_data_manager)
開發者ID:WarmongeR1,項目名稱:auto-sklearn,代碼行數:23,代碼來源:automl.py

示例14: main

def main(autosklearn_tmp_dir,
         basename,
         task_type,
         metric,
         limit,
         output_dir,
         ensemble_size=None,
         ensemble_nbest=None,
         seed=1,
         shared_mode=False,
         max_iterations=-1,
         precision="32"):

    watch = StopWatch()
    watch.start_task('ensemble_builder')

    used_time = 0
    time_iter = 0
    index_run = 0
    num_iteration = 0
    current_num_models = 0

    backend = Backend(output_dir, autosklearn_tmp_dir)
    dir_ensemble = os.path.join(autosklearn_tmp_dir, '.auto-sklearn',
                                'predictions_ensemble')
    dir_valid = os.path.join(autosklearn_tmp_dir, '.auto-sklearn',
                             'predictions_valid')
    dir_test = os.path.join(autosklearn_tmp_dir, '.auto-sklearn',
                            'predictions_test')
    paths_ = [dir_ensemble, dir_valid, dir_test]

    targets_ensemble = backend.load_targets_ensemble()

    dir_ensemble_list_mtimes = []

    while used_time < limit or (max_iterations > 0 and max_iterations >= num_iteration):
        num_iteration += 1
        logger.debug('Time left: %f', limit - used_time)
        logger.debug('Time last iteration: %f', time_iter)

        # Load the predictions from the models
        exists = [os.path.isdir(dir_) for dir_ in paths_]
        if not exists[0]:  # all(exists):
            logger.debug('Prediction directory %s does not exist!' %
                          dir_ensemble)
            time.sleep(2)
            used_time = watch.wall_elapsed('ensemble_builder')
            continue

        if shared_mode is False:
            dir_ensemble_list = sorted(glob.glob(os.path.join(
                dir_ensemble, 'predictions_ensemble_%s_*.npy' % seed)))
            if exists[1]:
                dir_valid_list = sorted(glob.glob(os.path.join(
                    dir_valid, 'predictions_valid_%s_*.npy' % seed)))
            else:
                dir_valid_list = []
            if exists[2]:
                dir_test_list = sorted(glob.glob(os.path.join(
                    dir_test, 'predictions_test_%s_*.npy' % seed)))
            else:
                dir_test_list = []
        else:
            dir_ensemble_list = sorted(os.listdir(dir_ensemble))
            dir_valid_list = sorted(os.listdir(dir_valid)) if exists[1] else []
            dir_test_list = sorted(os.listdir(dir_test)) if exists[2] else []

        # Check the modification times because predictions can be updated
        # over time!
        old_dir_ensemble_list_mtimes = dir_ensemble_list_mtimes
        dir_ensemble_list_mtimes = []

        for dir_ensemble_file in dir_ensemble_list:
            dir_ensemble_file = os.path.join(dir_ensemble, dir_ensemble_file)
            mtime = os.path.getmtime(dir_ensemble_file)
            dir_ensemble_list_mtimes.append(mtime)

        if len(dir_ensemble_list) == 0:
            logger.debug('Directories are empty')
            time.sleep(2)
            used_time = watch.wall_elapsed('ensemble_builder')
            continue

        if len(dir_ensemble_list) <= current_num_models and \
                old_dir_ensemble_list_mtimes == dir_ensemble_list_mtimes:
            logger.debug('Nothing has changed since the last time')
            time.sleep(2)
            used_time = watch.wall_elapsed('ensemble_builder')
            continue

        watch.start_task('ensemble_iter_' + str(index_run))

        # List of num_runs (which are in the filename) which will be included
        #  later
        include_num_runs = []
        backup_num_runs = []
        model_and_automl_re = re.compile(r'_([0-9]*)_([0-9]*)\.npy$')
        if ensemble_nbest is not None:
            # Keeps track of the single scores of each model in our ensemble
            scores_nbest = []
#.........這裏部分代碼省略.........
開發者ID:ixtel,項目名稱:auto-sklearn,代碼行數:101,代碼來源:ensemble_selection_script.py

示例15: main

def main(autosklearn_tmp_dir,
         dataset_name,
         task_type,
         metric,
         limit,
         output_dir,
         ensemble_size=None,
         ensemble_nbest=None,
         seed=1,
         shared_mode=False,
         max_iterations=-1,
         precision="32"):

    watch = StopWatch()
    watch.start_task('ensemble_builder')

    used_time = 0
    time_iter = 0
    index_run = 0
    num_iteration = 0
    current_num_models = 0

    backend = Backend(output_dir, autosklearn_tmp_dir)
    dir_ensemble = os.path.join(autosklearn_tmp_dir, '.auto-sklearn',
                                'predictions_ensemble')
    dir_valid = os.path.join(autosklearn_tmp_dir, '.auto-sklearn',
                             'predictions_valid')
    dir_test = os.path.join(autosklearn_tmp_dir, '.auto-sklearn',
                            'predictions_test')
    paths_ = [dir_ensemble, dir_valid, dir_test]

    dir_ensemble_list_mtimes = []

    while used_time < limit or (max_iterations > 0 and max_iterations >= num_iteration):
        num_iteration += 1
        logger.debug('Time left: %f', limit - used_time)
        logger.debug('Time last iteration: %f', time_iter)

        # Reload the ensemble targets every iteration, important, because cv may
        # update the ensemble targets in the cause of running auto-sklearn
        # TODO update cv in order to not need this any more!
        targets_ensemble = backend.load_targets_ensemble()

        # Load the predictions from the models
        exists = [os.path.isdir(dir_) for dir_ in paths_]
        if not exists[0]:  # all(exists):
            logger.debug('Prediction directory %s does not exist!' %
                          dir_ensemble)
            time.sleep(2)
            used_time = watch.wall_elapsed('ensemble_builder')
            continue

        if shared_mode is False:
            dir_ensemble_list = sorted(glob.glob(os.path.join(
                dir_ensemble, 'predictions_ensemble_%s_*.npy' % seed)))
            if exists[1]:
                dir_valid_list = sorted(glob.glob(os.path.join(
                    dir_valid, 'predictions_valid_%s_*.npy' % seed)))
            else:
                dir_valid_list = []
            if exists[2]:
                dir_test_list = sorted(glob.glob(os.path.join(
                    dir_test, 'predictions_test_%s_*.npy' % seed)))
            else:
                dir_test_list = []
        else:
            dir_ensemble_list = sorted(os.listdir(dir_ensemble))
            dir_valid_list = sorted(os.listdir(dir_valid)) if exists[1] else []
            dir_test_list = sorted(os.listdir(dir_test)) if exists[2] else []

        # Check the modification times because predictions can be updated
        # over time!
        old_dir_ensemble_list_mtimes = dir_ensemble_list_mtimes
        dir_ensemble_list_mtimes = []

        for dir_ensemble_file in dir_ensemble_list:
            if dir_ensemble_file.endswith("/"):
                dir_ensemble_file = dir_ensemble_file[:-1]
            basename = os.path.basename(dir_ensemble_file)
            dir_ensemble_file = os.path.join(dir_ensemble, basename)
            mtime = os.path.getmtime(dir_ensemble_file)
            dir_ensemble_list_mtimes.append(mtime)

        if len(dir_ensemble_list) == 0:
            logger.debug('Directories are empty')
            time.sleep(2)
            used_time = watch.wall_elapsed('ensemble_builder')
            continue

        if len(dir_ensemble_list) <= current_num_models and \
                old_dir_ensemble_list_mtimes == dir_ensemble_list_mtimes:
            logger.debug('Nothing has changed since the last time')
            time.sleep(2)
            used_time = watch.wall_elapsed('ensemble_builder')
            continue

        watch.start_task('ensemble_iter_' + str(index_run))

        # List of num_runs (which are in the filename) which will be included
        #  later
#.........這裏部分代碼省略.........
開發者ID:Allen1203,項目名稱:auto-sklearn,代碼行數:101,代碼來源:ensemble_selection_script.py


注:本文中的autosklearn.util.StopWatch類示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。