當前位置: 首頁>>代碼示例>>Python>>正文


Python StopWatch.stop_task方法代碼示例

本文整理匯總了Python中autosklearn.util.StopWatch.stop_task方法的典型用法代碼示例。如果您正苦於以下問題:Python StopWatch.stop_task方法的具體用法?Python StopWatch.stop_task怎麽用?Python StopWatch.stop_task使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在autosklearn.util.StopWatch的用法示例。


在下文中一共展示了StopWatch.stop_task方法的12個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_stopwatch_overhead

# 需要導入模塊: from autosklearn.util import StopWatch [as 別名]
# 或者: from autosklearn.util.StopWatch import stop_task [as 別名]
    def test_stopwatch_overhead(self):

        # Wall Overhead
        start = time.time()
        cpu_start = time.clock()
        watch = StopWatch()
        for i in range(1, 1000):
            watch.start_task('task_%d' % i)
            watch.stop_task('task_%d' % i)
        cpu_stop = time.clock()
        stop = time.time()
        dur = stop - start
        cpu_dur = cpu_stop - cpu_start
        cpu_overhead = cpu_dur - watch.cpu_sum()
        wall_overhead = dur - watch.wall_sum()

        self.assertLess(cpu_overhead, 1)
        self.assertLess(wall_overhead, 1)
        self.assertLess(watch.cpu_sum(), 2 * watch.wall_sum())
開發者ID:Bryan-LL,項目名稱:auto-sklearn,代碼行數:21,代碼來源:test_StopWatch.py

示例2: test_stopwatch_overhead

# 需要導入模塊: from autosklearn.util import StopWatch [as 別名]
# 或者: from autosklearn.util.StopWatch import stop_task [as 別名]
    def test_stopwatch_overhead(self):
        # CPU overhead
        start = time.clock()
        watch = StopWatch()
        for i in range(1, 100000):
            watch.start_task("task_%d" % i)
            watch.stop_task("task_%d" % i)
        stop = time.clock()
        dur = stop - start
        cpu_overhead = dur - watch.cpu_sum()
        self.assertLess(cpu_overhead, 1.5)

        # Wall Overhead
        start = time.time()
        watch = StopWatch()
        for i in range(1, 100000):
            watch.start_task("task_%d" % i)
            watch.stop_task("task_%d" % i)
        stop = time.time()
        dur = stop - start
        wall_overhead = dur - watch.wall_sum()

        self.assertLess(wall_overhead, 2)
        self.assertLess(cpu_overhead, wall_overhead)
開發者ID:ixtel,項目名稱:auto-sklearn,代碼行數:26,代碼來源:test_StopWatch.py

示例3: main

# 需要導入模塊: from autosklearn.util import StopWatch [as 別名]
# 或者: from autosklearn.util.StopWatch import stop_task [as 別名]

#.........這裏部分代碼省略.........
                    self.logger.info('Ensemble output did not change.')
                    time.sleep(2)
                    continue
                else:
                    last_hash = current_hash
            else:
                last_hash = current_hash

            # Save the ensemble for later use in the main auto-sklearn module!
            backend.save_ensemble(ensemble, index_run, self.seed)

            # Save predictions for valid and test data set
            if len(dir_valid_list) == len(dir_ensemble_list):
                all_predictions_valid = np.array(all_predictions_valid)
                ensemble_predictions_valid = ensemble.predict(all_predictions_valid)
                if self.task_type == BINARY_CLASSIFICATION:
                    ensemble_predictions_valid = ensemble_predictions_valid[:, 1]
                if self.low_precision:
                    if self.task_type in [BINARY_CLASSIFICATION, MULTICLASS_CLASSIFICATION, MULTILABEL_CLASSIFICATION]:
                        ensemble_predictions_valid[ensemble_predictions_valid < 1e-4] = 0.
                    if self.metric in [BAC_METRIC, F1_METRIC]:
                        bin_array = np.zeros(ensemble_predictions_valid.shape, dtype=np.int32)
                        if (self.task_type != MULTICLASS_CLASSIFICATION) or (
                            ensemble_predictions_valid.shape[1] == 1):
                            bin_array[ensemble_predictions_valid >= 0.5] = 1
                        else:
                            sample_num = ensemble_predictions_valid.shape[0]
                            for i in range(sample_num):
                                j = np.argmax(ensemble_predictions_valid[i, :])
                                bin_array[i, j] = 1
                        ensemble_predictions_valid = bin_array
                    if self.task_type in CLASSIFICATION_TASKS:
                        if ensemble_predictions_valid.size < (20000 * 20):
                            precision = 3
                        else:
                            precision = 2
                    else:
                        if ensemble_predictions_valid.size > 1000000:
                            precision = 4
                        else:
                            # File size maximally 2.1MB
                            precision = 6

                backend.save_predictions_as_txt(ensemble_predictions_valid,
                                                'valid', index_run, prefix=self.dataset_name,
                                                precision=precision)
            else:
                self.logger.info('Could not find as many validation set predictions (%d)'
                             'as ensemble predictions (%d)!.',
                            len(dir_valid_list), len(dir_ensemble_list))

            del all_predictions_valid

            if len(dir_test_list) == len(dir_ensemble_list):
                all_predictions_test = np.array(all_predictions_test)
                ensemble_predictions_test = ensemble.predict(all_predictions_test)
                if self.task_type == BINARY_CLASSIFICATION:
                    ensemble_predictions_test = ensemble_predictions_test[:, 1]
                if self.low_precision:
                    if self.task_type in [BINARY_CLASSIFICATION, MULTICLASS_CLASSIFICATION, MULTILABEL_CLASSIFICATION]:
                        ensemble_predictions_test[ensemble_predictions_test < 1e-4] = 0.
                    if self.metric in [BAC_METRIC, F1_METRIC]:
                        bin_array = np.zeros(ensemble_predictions_test.shape,
                                             dtype=np.int32)
                        if (self.task_type != MULTICLASS_CLASSIFICATION) or (
                                    ensemble_predictions_test.shape[1] == 1):
                            bin_array[ensemble_predictions_test >= 0.5] = 1
                        else:
                            sample_num = ensemble_predictions_test.shape[0]
                            for i in range(sample_num):
                                j = np.argmax(ensemble_predictions_test[i, :])
                                bin_array[i, j] = 1
                        ensemble_predictions_test = bin_array
                    if self.task_type in CLASSIFICATION_TASKS:
                        if ensemble_predictions_test.size < (20000 * 20):
                            precision = 3
                        else:
                            precision = 2
                    else:
                        if ensemble_predictions_test.size > 1000000:
                            precision = 4
                        else:
                            precision = 6

                backend.save_predictions_as_txt(ensemble_predictions_test,
                                                'test', index_run, prefix=self.dataset_name,
                                                precision=precision)
            else:
                self.logger.info('Could not find as many test set predictions (%d) as '
                             'ensemble predictions (%d)!',
                            len(dir_test_list), len(dir_ensemble_list))

            del all_predictions_test

            current_num_models = len(dir_ensemble_list)
            watch.stop_task('index_run' + str(index_run))
            time_iter = watch.get_wall_dur('index_run' + str(index_run))
            used_time = watch.wall_elapsed('ensemble_builder')
            index_run += 1
        return
開發者ID:Hanshan1988,項目名稱:auto-sklearn,代碼行數:104,代碼來源:ensemble_builder.py

示例4: AutoML

# 需要導入模塊: from autosklearn.util import StopWatch [as 別名]
# 或者: from autosklearn.util.StopWatch import stop_task [as 別名]

#.........這裏部分代碼省略.........
                                            encode_labels=False)

        return self._fit(loaded_data_manager)

    def fit_automl_dataset(self, dataset):
        self._stopwatch = StopWatch()
        self._backend.save_start_time(self._seed)

        name = os.path.basename(dataset)
        self._stopwatch.start_task(name)
        self._start_task(self._stopwatch, name)
        self._dataset_name = name

        logger_name = 'AutoML(%d):%s' % (self._seed, name)
        setup_logger(os.path.join(self._tmp_dir, '%s.log' % str(logger_name)))
        self._logger = get_logger(logger_name)

        self._logger.debug('======== Reading and converting data ==========')
        # Encoding the labels will be done after the metafeature calculation!
        loaded_data_manager = CompetitionDataManager(
            dataset, encode_labels=False,
            max_memory_in_mb=float(self._ml_memory_limit) / 3)
        loaded_data_manager_str = str(loaded_data_manager).split('\n')
        for part in loaded_data_manager_str:
            self._logger.debug(part)

        return self._fit(loaded_data_manager)

    @staticmethod
    def _start_task(watcher, task_name):
        watcher.start_task(task_name)

    @staticmethod
    def _stop_task(watcher, task_name):
        watcher.stop_task(task_name)

    @staticmethod
    def _print_load_time(basename, time_left_for_this_task,
                         time_for_load_data, logger):

        time_left_after_reading = max(
            0, time_left_for_this_task - time_for_load_data)
        logger.info('Remaining time after reading %s %5.2f sec' %
                    (basename, time_left_after_reading))
        return time_for_load_data

    def _do_dummy_prediction(self, datamanager):
        autosklearn.cli.base_interface.main(datamanager,
                                            self._resampling_strategy,
                                            None,
                                            None,
                                            mode_args=self._resampling_strategy_arguments)

    def _fit(self, datamanager):
        # Reset learnt stuff
        self.models_ = None
        self.ensemble_indices_ = None

        # Check arguments prior to doing anything!
        if self._resampling_strategy not in ['holdout', 'holdout-iterative-fit',
                                             'cv', 'nested-cv', 'partial-cv']:
            raise ValueError('Illegal resampling strategy: %s' %
                             self._resampling_strategy)
        if self._resampling_strategy == 'partial-cv' and \
                self._ensemble_size != 0:
            raise ValueError("Resampling strategy partial-cv cannot be used "
開發者ID:stokasto,項目名稱:auto-sklearn,代碼行數:70,代碼來源:automl.py

示例5: main

# 需要導入模塊: from autosklearn.util import StopWatch [as 別名]
# 或者: from autosklearn.util.StopWatch import stop_task [as 別名]

#.........這裏部分代碼省略.........
                                                precision)

#        if len(all_predictions_train) == len(all_predictions_test) == len(
#                all_predictions_valid) == 0:
        if len(include_num_runs) == 0:
            logger.error('All models do just random guessing')
            time.sleep(2)
            continue

        else:
            try:
                indices, trajectory = ensemble_selection(
                    np.array(all_predictions_train), targets_ensemble,
                    ensemble_size, task_type, metric)

                logger.info('Trajectory and indices!')
                logger.info(trajectory)
                logger.info(indices)

            except ValueError as e:
                logger.error('Caught ValueError: ' + str(e))
                used_time = watch.wall_elapsed('ensemble_builder')
                time.sleep(2)
                continue
            except Exception as e:
                logger.error('Caught error! %s', e.message)
                used_time = watch.wall_elapsed('ensemble_builder')
                time.sleep(2)
                continue

            # Output the score
            logger.info('Training performance: %f' % trajectory[-1])

            # Print the ensemble members:
            ensemble_members_run_numbers = dict()
            ensemble_members = Counter(indices).most_common()
            ensemble_members_string = 'Ensemble members:\n'
            logger.info(ensemble_members)
            for ensemble_member in ensemble_members:
                weight = float(ensemble_member[1]) / len(indices)
                ensemble_members_string += \
                    ('    %s; weight: %10f; performance: %10f\n' %
                     (indices_to_model_names[ensemble_member[0]],
                      weight,
                      model_names_to_scores[
                         indices_to_model_names[ensemble_member[0]]]))

                ensemble_members_run_numbers[
                    indices_to_run_num[
                        ensemble_member[0]]] = weight
            logger.info(ensemble_members_string)

        # Save the ensemble indices for later use!
        backend.save_ensemble_indices_weights(ensemble_members_run_numbers,
                                              index_run, seed)

        all_predictions_valid = get_predictions(dir_valid,
                                                dir_valid_list,
                                                include_num_runs,
                                                model_and_automl_re,
                                                precision)

        # Save predictions for valid and test data set
        if len(dir_valid_list) == len(dir_ensemble_list):
            all_predictions_valid = np.array(all_predictions_valid)
            ensemble_predictions_valid = np.mean(
                all_predictions_valid[indices.astype(int)], axis=0)
            backend.save_predictions_as_txt(ensemble_predictions_valid,
                                            'valid', index_run, prefix=basename)
        else:
            logger.info('Could not find as many validation set predictions (%d)'
                         'as ensemble predictions (%d)!.',
                        len(dir_valid_list), len(dir_ensemble_list))

        del all_predictions_valid
        all_predictions_test = get_predictions(dir_test,
                                               dir_test_list,
                                               include_num_runs,
                                               model_and_automl_re,
                                               precision)

        if len(dir_test_list) == len(dir_ensemble_list):
            all_predictions_test = np.array(all_predictions_test)
            ensemble_predictions_test = np.mean(
                all_predictions_test[indices.astype(int)], axis=0)
            backend.save_predictions_as_txt(ensemble_predictions_test,
                                            'test', index_run, prefix=basename)
        else:
            logger.info('Could not find as many test set predictions (%d) as '
                         'ensemble predictions (%d)!',
                        len(dir_test_list), len(dir_ensemble_list))

        del all_predictions_test

        current_num_models = len(dir_ensemble_list)
        watch.stop_task('ensemble_iter_' + str(index_run))
        time_iter = watch.get_wall_dur('ensemble_iter_' + str(index_run))
        used_time = watch.wall_elapsed('ensemble_builder')
        index_run += 1
    return
開發者ID:ixtel,項目名稱:auto-sklearn,代碼行數:104,代碼來源:ensemble_selection_script.py

示例6: main

# 需要導入模塊: from autosklearn.util import StopWatch [as 別名]
# 或者: from autosklearn.util.StopWatch import stop_task [as 別名]

#.........這裏部分代碼省略.........
                    include_num_runs.append((automl_seed, num_run))

            model_idx += 1

        # If there is no model better than random guessing, we have to use
        # all models which do random guessing
        if len(include_num_runs) == 0:
            include_num_runs = backup_num_runs

        indices_to_model_names = dict()
        indices_to_run_num = dict()
        for i, model_name in enumerate(dir_ensemble_list):
            match = model_and_automl_re.search(model_name)
            automl_seed = int(match.group(1))
            num_run = int(match.group(2))
            if (automl_seed, num_run) in include_num_runs:
                num_indices = len(indices_to_model_names)
                indices_to_model_names[num_indices] = model_name
                indices_to_run_num[num_indices] = (automl_seed, num_run)

        try:
            all_predictions_train, all_predictions_valid, all_predictions_test =\
                get_all_predictions(dir_ensemble, dir_ensemble_list,
                                    dir_valid, dir_valid_list,
                                    dir_test, dir_test_list,
                                    include_num_runs,
                                    model_and_automl_re,
                                    precision)
        except IOError:
            logger.error('Could not load the predictions.')
            continue

        if len(include_num_runs) == 0:
            logger.error('All models do just random guessing')
            time.sleep(2)
            continue

        else:
            ensemble = EnsembleSelection(ensemble_size=ensemble_size,
                                         task_type=task_type,
                                         metric=metric)

            try:
                ensemble.fit(all_predictions_train, targets_ensemble,
                             include_num_runs)
                logger.info(ensemble)

            except ValueError as e:
                logger.error('Caught ValueError: ' + str(e))
                used_time = watch.wall_elapsed('ensemble_builder')
                time.sleep(2)
                continue
            except IndexError as e:
                logger.error('Caught IndexError: ' + str(e))
                used_time = watch.wall_elapsed('ensemble_builder')
                time.sleep(2)
                continue
            except Exception as e:
                logger.error('Caught error! %s', e.message)
                used_time = watch.wall_elapsed('ensemble_builder')
                time.sleep(2)
                continue

            # Output the score
            logger.info('Training performance: %f' % ensemble.train_score_)

        # Save the ensemble for later use in the main auto-sklearn module!
        backend.save_ensemble(ensemble, index_run, seed)

        # Save predictions for valid and test data set
        if len(dir_valid_list) == len(dir_ensemble_list):
            all_predictions_valid = np.array(all_predictions_valid)
            ensemble_predictions_valid = ensemble.predict(all_predictions_valid)
            backend.save_predictions_as_txt(ensemble_predictions_valid,
                                            'valid', index_run, prefix=dataset_name)
        else:
            logger.info('Could not find as many validation set predictions (%d)'
                         'as ensemble predictions (%d)!.',
                        len(dir_valid_list), len(dir_ensemble_list))

        del all_predictions_valid

        if len(dir_test_list) == len(dir_ensemble_list):
            all_predictions_test = np.array(all_predictions_test)
            ensemble_predictions_test = ensemble.predict(all_predictions_test)
            backend.save_predictions_as_txt(ensemble_predictions_test,
                                            'test', index_run, prefix=dataset_name)
        else:
            logger.info('Could not find as many test set predictions (%d) as '
                         'ensemble predictions (%d)!',
                        len(dir_test_list), len(dir_ensemble_list))

        del all_predictions_test

        current_num_models = len(dir_ensemble_list)
        watch.stop_task('ensemble_iter_' + str(index_run))
        time_iter = watch.get_wall_dur('ensemble_iter_' + str(index_run))
        used_time = watch.wall_elapsed('ensemble_builder')
        index_run += 1
    return
開發者ID:Allen1203,項目名稱:auto-sklearn,代碼行數:104,代碼來源:ensemble_selection_script.py

示例7: main

# 需要導入模塊: from autosklearn.util import StopWatch [as 別名]
# 或者: from autosklearn.util.StopWatch import stop_task [as 別名]

#.........這裏部分代碼省略.........
                # the current model if it is better than random
                elif len(scores_nbest) < ensemble_size:
                    scores_nbest.append(score)
                    indices_nbest.append(model_idx)
                    exclude_mask.append(False)
                else:
                    # Take the worst performing model in our ensemble so far
                    idx = np.argmin(np.array([scores_nbest]))

                    # If the current model is better than the worst model in
                    # our ensemble replace it by the current model
                    if scores_nbest[idx] < score:
                        logger.debug(
                            'Worst model in our ensemble: %d with score %f will be replaced by model %d with score %f'
                            % (idx, scores_nbest[idx], model_idx, score))
                        scores_nbest[idx] = score
                        # Exclude the old model
                        exclude_mask[int(indices_nbest[idx])] = True
                        indices_nbest[idx] = model_idx
                        exclude_mask.append(False)
                    # Otherwise exclude the current model from the ensemble
                    else:
                        exclude_mask.append(True)

            else:
                # Load all predictions that are better than random
                if score <= 0.001:
                    exclude_mask.append(True)
                    logger.error('Model only predicts at random: ' + f +
                                  ' has score: ' + str(score))
                else:
                    exclude_mask.append(False)
                    all_predictions_train.append(predictions)

            model_idx += 1
            print(exclude_mask)

        all_predictions_valid = get_predictions(dir_valid,
                                                dir_valid_list,
                                                exclude_mask)
        all_predictions_test = get_predictions(dir_test,
                                               dir_test_list,
                                               exclude_mask)

        if len(all_predictions_train) == len(all_predictions_test) == len(
                all_predictions_valid) == 0:
            logger.error('All models do just random guessing')
            time.sleep(2)
            continue

        if len(all_predictions_train) == 1:
            logger.debug('Only one model so far we just copy its predictions')
            Y_valid = all_predictions_valid[0]
            Y_test = all_predictions_test[0]
        else:
            try:
                # Compute the weights for the ensemble
                # Use equally initialized weights
                n_models = len(all_predictions_train)
                init_weights = np.ones([n_models]) / n_models

                weights = weighted_ensemble(logger.debug, np.array(all_predictions_train),
                                            true_labels, task_type, metric,
                                            init_weights)
            except ValueError:
                logger.error('Caught ValueError!')
                used_time = watch.wall_elapsed('ensemble_builder')
                continue
            except Exception:
                logger.error('Caught error!')
                used_time = watch.wall_elapsed('ensemble_builder')
                continue

            # Compute the ensemble predictions for the valid data
            Y_valid = ensemble_prediction(np.array(all_predictions_valid),
                                          weights)

            # Compute the ensemble predictions for the test data
            Y_test = ensemble_prediction(np.array(all_predictions_test),
                                         weights)

        # Save predictions for valid and test data set
        filename_test = os.path.join(
            output_dir,
            basename + '_valid_' + str(index_run).zfill(3) + '.predict')
        save_predictions(os.path.join(predictions_dir,
                                                filename_test), Y_valid)

        filename_test = os.path.join(
            output_dir,
            basename + '_test_' + str(index_run).zfill(3) + '.predict')
        save_predictions(os.path.join(predictions_dir,
                                                filename_test), Y_test)

        current_num_models = len(dir_ensemble_list)
        watch.stop_task('ensemble_iter_' + str(index_run))
        time_iter = watch.get_wall_dur('ensemble_iter_' + str(index_run))
        used_time = watch.wall_elapsed('ensemble_builder')
        index_run += 1
    return
開發者ID:WarmongeR1,項目名稱:auto-sklearn,代碼行數:104,代碼來源:ensemble_script.py

示例8: AutoML

# 需要導入模塊: from autosklearn.util import StopWatch [as 別名]
# 或者: from autosklearn.util.StopWatch import stop_task [as 別名]

#.........這裏部分代碼省略.........
        self._logger.info(text)

    def fit_automl_dataset(self, basename, input_dir):
        # == Creating a data object with data and information about it
        self._basename = basename

        self._stopwatch = StopWatch()
        self._stopwatch.start_task(self._basename)

        self._logger = get_automl_logger(self._log_dir, self._basename,
                                         self._seed)

        self._debug('======== Reading and converting data ==========')
        # Encoding the labels will be done after the metafeature calculation!
        loaded_data_manager = CompetitionDataManager(self._basename, input_dir,
                                                     verbose=True,
                                                     encode_labels=False)
        loaded_data_manager_str = str(loaded_data_manager).split('\n')
        for part in loaded_data_manager_str:
            self._debug(part)

        return self._fit(loaded_data_manager)

    def _save_data_manager(self, data_d, tmp_dir, basename, watcher):
        task_name = 'StoreDatamanager'

        watcher.start_task(task_name)

        filepath = os.path.join(tmp_dir, basename + '_Manager.pkl')

        if _check_path_for_save(filepath, 'Data manager ', self._debug):
            pickle.dump(data_d, open(filepath, 'w'), protocol=-1)

        watcher.stop_task(task_name)
        return filepath

    def _fit(self, manager):
        # TODO: check that data and task definition fit together!

        self._metric = manager.info['metric']
        self._task = manager.info['task']
        self._target_num = manager.info['target_num']

        set_auto_seed(self._seed)

        # load data
        _save_ensemble_data(
            manager.data['X_train'],
            manager.data['Y_train'],
            self._tmp_dir,
            self._stopwatch)

        time_for_load_data = self._stopwatch.wall_elapsed(self._basename)

        if self._debug_mode:
            _print_load_time(
                self._basename,
                self._time_for_task,
                time_for_load_data,
                self._info)

        # == Calculate metafeatures
        meta_features = _calculate_meta_features(
            data_feat_type=manager.feat_type,
            data_info_task=manager.info['task'], basename=self._basename,
            metalearning_cnt=self._initial_configurations_via_metalearning,
開發者ID:WarmongeR1,項目名稱:auto-sklearn,代碼行數:70,代碼來源:automl.py

示例9: AutoML

# 需要導入模塊: from autosklearn.util import StopWatch [as 別名]
# 或者: from autosklearn.util.StopWatch import stop_task [as 別名]

#.........這裏部分代碼省略.........

    def fit_automl_dataset(self, dataset):
        self._stopwatch = StopWatch()
        self._backend.save_start_time(self._seed)

        name = os.path.basename(dataset)
        self._stopwatch.start_task(name)
        self._start_task(self._stopwatch, name)
        self._dataset_name = name

        self._logger = self._get_logger(name)
        self._logger.debug('======== Reading and converting data ==========')
        # Encoding the labels will be done after the metafeature calculation!
        self._data_memory_limit = float(self._ml_memory_limit) / 3
        loaded_data_manager = CompetitionDataManager(
            dataset, encode_labels=False,
            max_memory_in_mb=self._data_memory_limit)
        loaded_data_manager_str = str(loaded_data_manager).split('\n')
        for part in loaded_data_manager_str:
            self._logger.debug(part)

        return self._fit(loaded_data_manager)

    def _get_logger(self, name):
        logger_name = 'AutoML(%d):%s' % (self._seed, name)
        setup_logger(os.path.join(self._tmp_dir, '%s.log' % str(logger_name)))
        return get_logger(logger_name)

    @staticmethod
    def _start_task(watcher, task_name):
        watcher.start_task(task_name)

    @staticmethod
    def _stop_task(watcher, task_name):
        watcher.stop_task(task_name)

    @staticmethod
    def _print_load_time(basename, time_left_for_this_task,
                         time_for_load_data, logger):

        time_left_after_reading = max(
            0, time_left_for_this_task - time_for_load_data)
        logger.info('Remaining time after reading %s %5.2f sec' %
                    (basename, time_left_after_reading))
        return time_for_load_data

    def _do_dummy_prediction(self, datamanager, num_run):

        self._logger.info("Starting to create dummy predictions.")
        time_limit = int(self._time_for_task / 6.)
        memory_limit = int(self._ml_memory_limit)

        _info = eval_with_limits(datamanager, self._tmp_dir, 1,
                                 self._seed, num_run,
                                 self._resampling_strategy,
                                 self._resampling_strategy_arguments,
                                 memory_limit, time_limit)
        if _info[4] == StatusType.SUCCESS:
            self._logger.info("Finished creating dummy prediction 1/2.")
        else:
            self._logger.error('Error creating dummy prediction 1/2:%s ',
                               _info[3])

        num_run += 1

        _info = eval_with_limits(datamanager, self._tmp_dir, 2,
開發者ID:Ayaro,項目名稱:auto-sklearn,代碼行數:70,代碼來源:automl.py

示例10: main

# 需要導入模塊: from autosklearn.util import StopWatch [as 別名]
# 或者: from autosklearn.util.StopWatch import stop_task [as 別名]

#.........這裏部分代碼省略.........
                                               include_num_runs,
                                               re_num_run)

        if len(all_predictions_train) == len(all_predictions_test) == len(
                all_predictions_valid) == 0:
            logger.error('All models do just random guessing')
            time.sleep(2)
            continue

        elif len(all_predictions_train) == 1:
            logger.debug('Only one model so far we just copy its predictions')
            ensemble_members_run_numbers = {0: 1.0}

            # Output the score
            logger.info('Training performance: %f' %
                         np.max(model_names_to_scores.values()))
        else:
            try:
                indices, trajectory = ensemble_selection(
                    np.array(all_predictions_train), true_labels,
                    ensemble_size, task_type, metric)

                logger.info('Trajectory and indices!')
                logger.info(trajectory)
                logger.info(indices)

            except ValueError as e:
                logger.error('Caught ValueError: ' + str(e))
                used_time = watch.wall_elapsed('ensemble_builder')
                continue
            except Exception as e:
                logger.error('Caught error! %s', e.message)
                used_time = watch.wall_elapsed('ensemble_builder')
                continue

            # Output the score
            logger.info('Training performance: %f' % trajectory[-1])

            # Print the ensemble members:
            ensemble_members_run_numbers = dict()
            ensemble_members = Counter(indices).most_common()
            ensemble_members_string = 'Ensemble members:\n'
            logger.info(ensemble_members)
            for ensemble_member in ensemble_members:
                weight = float(ensemble_member[1]) / len(indices)
                ensemble_members_string += \
                    ('    %s; weight: %10f; performance: %10f\n' %
                     (indices_to_model_names[ensemble_member[0]],
                      weight,
                      model_names_to_scores[
                         indices_to_model_names[ensemble_member[0]]]))

                ensemble_members_run_numbers[
                    indices_to_run_num[
                        ensemble_member[0]]] = weight
            logger.info(ensemble_members_string)

        # Save the ensemble indices for later use!
        filename_indices = os.path.join(indices_output_dir,
                                        str(index_run).zfill(5) + '.indices')

        logger.info(ensemble_members_run_numbers)
        with open(filename_indices, 'w') as fh:
            pickle.dump(ensemble_members_run_numbers, fh)

        # Save predictions for valid and test data set
        if len(dir_valid_list) == len(dir_ensemble_list):
            ensemble_predictions_valid = np.mean(
                all_predictions_valid[indices.astype(int)],
                axis=0)
            filename_test = os.path.join(
                output_dir,
                basename + '_valid_' + str(index_run).zfill(3) + '.predict')
            save_predictions(
                os.path.join(predictions_dir, filename_test),
                ensemble_predictions_valid)
        else:
            logger.info('Could not find as many validation set predictions '
                         'as ensemble predictions!.')

        if len(dir_test_list) == len(dir_ensemble_list):
            ensemble_predictions_test = np.mean(
                all_predictions_test[indices.astype(int)],
                axis=0)
            filename_test = os.path.join(
                output_dir,
                basename + '_test_' + str(index_run).zfill(3) + '.predict')
            save_predictions(
                os.path.join(predictions_dir, filename_test),
                ensemble_predictions_test)
        else:
            logger.info('Could not find as many test set predictions as '
                         'ensemble predictions!')

        current_num_models = len(dir_ensemble_list)
        watch.stop_task('ensemble_iter_' + str(index_run))
        time_iter = watch.get_wall_dur('ensemble_iter_' + str(index_run))
        used_time = watch.wall_elapsed('ensemble_builder')
        index_run += 1
    return
開發者ID:WarmongeR1,項目名稱:auto-sklearn,代碼行數:104,代碼來源:ensemble_selection_script.py

示例11: AutoML

# 需要導入模塊: from autosklearn.util import StopWatch [as 別名]
# 或者: from autosklearn.util.StopWatch import stop_task [as 別名]

#.........這裏部分代碼省略.........

    def fit_automl_dataset(self, dataset):
        self._stopwatch = StopWatch()
        self._backend.save_start_time(self._seed)

        name = os.path.basename(dataset)
        self._stopwatch.start_task(name)
        self._start_task(self._stopwatch, name)
        self._dataset_name = name

        self._logger = self._get_logger(name)
        self._logger.debug('======== Reading and converting data ==========')
        # Encoding the labels will be done after the metafeature calculation!
        self._data_memory_limit = float(self._ml_memory_limit) / 3
        loaded_data_manager = CompetitionDataManager(
            dataset, encode_labels=False,
            max_memory_in_mb=self._data_memory_limit)
        loaded_data_manager_str = str(loaded_data_manager).split('\n')
        for part in loaded_data_manager_str:
            self._logger.debug(part)

        return self._fit(loaded_data_manager)

    def _get_logger(self, name):
        logger_name = 'AutoML(%d):%s' % (self._seed, name)
        setup_logger(os.path.join(self._backend.temporary_directory, '%s.log' % str(logger_name)))
        return get_logger(logger_name)

    @staticmethod
    def _start_task(watcher, task_name):
        watcher.start_task(task_name)

    @staticmethod
    def _stop_task(watcher, task_name):
        watcher.stop_task(task_name)

    @staticmethod
    def _print_load_time(basename, time_left_for_this_task,
                         time_for_load_data, logger):

        time_left_after_reading = max(
            0, time_left_for_this_task - time_for_load_data)
        logger.info('Remaining time after reading %s %5.2f sec' %
                    (basename, time_left_after_reading))
        return time_for_load_data

    def _do_dummy_prediction(self, datamanager, num_run):

        self._logger.info("Starting to create dummy predictions.")
        # time_limit = int(self._time_for_task / 6.)
        memory_limit = int(self._ml_memory_limit)
        ta = ExecuteTaFuncWithQueue(backend=self._backend,
                                    autosklearn_seed=self._seed,
                                    resampling_strategy=self._resampling_strategy,
                                    initial_num_run=num_run,
                                    logger=self._logger,
                                    **self._resampling_strategy_arguments)

        status, cost, runtime, additional_info = \
            ta.run(1, cutoff=self._time_for_task, memory_limit=memory_limit)
        if status == StatusType.SUCCESS:
            self._logger.info("Finished creating dummy predictions.")
        else:
            self._logger.error('Error creating dummy predictions:%s ',
                               additional_info)
開發者ID:automl,項目名稱:auto-sklearn,代碼行數:69,代碼來源:automl.py

示例12: AutoML

# 需要導入模塊: from autosklearn.util import StopWatch [as 別名]
# 或者: from autosklearn.util.StopWatch import stop_task [as 別名]

#.........這裏部分代碼省略.........
        self._logger.debug('======== Reading and converting data ==========')
        # Encoding the labels will be done after the metafeature calculation!
        self._data_memory_limit = float(self._ml_memory_limit) / 3
        loaded_data_manager = CompetitionDataManager(
            dataset, max_memory_in_mb=self._data_memory_limit)
        loaded_data_manager_str = str(loaded_data_manager).split('\n')
        for part in loaded_data_manager_str:
            self._logger.debug(part)

        return self._fit(loaded_data_manager, metric)

    def fit_on_datamanager(self, datamanager, metric):
        self._stopwatch = StopWatch()
        self._backend.save_start_time(self._seed)

        name = os.path.basename(datamanager.name)
        self._stopwatch.start_task(name)
        self._start_task(self._stopwatch, name)
        self._dataset_name = name

        self._logger = self._get_logger(name)
        self._fit(datamanager, metric)

    def _get_logger(self, name):
        logger_name = 'AutoML(%d):%s' % (self._seed, name)
        setup_logger(os.path.join(self._backend.temporary_directory, '%s.log' % str(logger_name)))
        return get_logger(logger_name)

    @staticmethod
    def _start_task(watcher, task_name):
        watcher.start_task(task_name)

    @staticmethod
    def _stop_task(watcher, task_name):
        watcher.stop_task(task_name)

    @staticmethod
    def _print_load_time(basename, time_left_for_this_task,
                         time_for_load_data, logger):

        time_left_after_reading = max(
            0, time_left_for_this_task - time_for_load_data)
        logger.info('Remaining time after reading %s %5.2f sec' %
                    (basename, time_left_after_reading))
        return time_for_load_data

    def _do_dummy_prediction(self, datamanager, num_run):

        # When using partial-cv it makes no sense to do dummy predictions
        if self._resampling_strategy in ['partial-cv',
                                         'partial-cv-iterative-fit']:
            return num_run

        self._logger.info("Starting to create dummy predictions.")
        memory_limit = int(self._ml_memory_limit)
        scenario_mock = unittest.mock.Mock()
        scenario_mock.wallclock_limit = self._time_for_task
        # This stats object is a hack - maybe the SMAC stats object should
        # already be generated here!
        stats = Stats(scenario_mock)
        stats.start_timing()
        ta = ExecuteTaFuncWithQueue(backend=self._backend,
                                    autosklearn_seed=self._seed,
                                    resampling_strategy=self._resampling_strategy,
                                    initial_num_run=num_run,
                                    logger=self._logger,
開發者ID:Bryan-LL,項目名稱:auto-sklearn,代碼行數:70,代碼來源:automl.py


注:本文中的autosklearn.util.StopWatch.stop_task方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。