當前位置: 首頁>>代碼示例>>Python>>正文


Python StopWatch.get_wall_dur方法代碼示例

本文整理匯總了Python中autosklearn.util.StopWatch.get_wall_dur方法的典型用法代碼示例。如果您正苦於以下問題:Python StopWatch.get_wall_dur方法的具體用法?Python StopWatch.get_wall_dur怎麽用?Python StopWatch.get_wall_dur使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在autosklearn.util.StopWatch的用法示例。


在下文中一共展示了StopWatch.get_wall_dur方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: main

# 需要導入模塊: from autosklearn.util import StopWatch [as 別名]
# 或者: from autosklearn.util.StopWatch import get_wall_dur [as 別名]

#.........這裏部分代碼省略.........
                    self.logger.info('Ensemble output did not change.')
                    time.sleep(2)
                    continue
                else:
                    last_hash = current_hash
            else:
                last_hash = current_hash

            # Save the ensemble for later use in the main auto-sklearn module!
            backend.save_ensemble(ensemble, index_run, self.seed)

            # Save predictions for valid and test data set
            if len(dir_valid_list) == len(dir_ensemble_list):
                all_predictions_valid = np.array(all_predictions_valid)
                ensemble_predictions_valid = ensemble.predict(all_predictions_valid)
                if self.task_type == BINARY_CLASSIFICATION:
                    ensemble_predictions_valid = ensemble_predictions_valid[:, 1]
                if self.low_precision:
                    if self.task_type in [BINARY_CLASSIFICATION, MULTICLASS_CLASSIFICATION, MULTILABEL_CLASSIFICATION]:
                        ensemble_predictions_valid[ensemble_predictions_valid < 1e-4] = 0.
                    if self.metric in [BAC_METRIC, F1_METRIC]:
                        bin_array = np.zeros(ensemble_predictions_valid.shape, dtype=np.int32)
                        if (self.task_type != MULTICLASS_CLASSIFICATION) or (
                            ensemble_predictions_valid.shape[1] == 1):
                            bin_array[ensemble_predictions_valid >= 0.5] = 1
                        else:
                            sample_num = ensemble_predictions_valid.shape[0]
                            for i in range(sample_num):
                                j = np.argmax(ensemble_predictions_valid[i, :])
                                bin_array[i, j] = 1
                        ensemble_predictions_valid = bin_array
                    if self.task_type in CLASSIFICATION_TASKS:
                        if ensemble_predictions_valid.size < (20000 * 20):
                            precision = 3
                        else:
                            precision = 2
                    else:
                        if ensemble_predictions_valid.size > 1000000:
                            precision = 4
                        else:
                            # File size maximally 2.1MB
                            precision = 6

                backend.save_predictions_as_txt(ensemble_predictions_valid,
                                                'valid', index_run, prefix=self.dataset_name,
                                                precision=precision)
            else:
                self.logger.info('Could not find as many validation set predictions (%d)'
                             'as ensemble predictions (%d)!.',
                            len(dir_valid_list), len(dir_ensemble_list))

            del all_predictions_valid

            if len(dir_test_list) == len(dir_ensemble_list):
                all_predictions_test = np.array(all_predictions_test)
                ensemble_predictions_test = ensemble.predict(all_predictions_test)
                if self.task_type == BINARY_CLASSIFICATION:
                    ensemble_predictions_test = ensemble_predictions_test[:, 1]
                if self.low_precision:
                    if self.task_type in [BINARY_CLASSIFICATION, MULTICLASS_CLASSIFICATION, MULTILABEL_CLASSIFICATION]:
                        ensemble_predictions_test[ensemble_predictions_test < 1e-4] = 0.
                    if self.metric in [BAC_METRIC, F1_METRIC]:
                        bin_array = np.zeros(ensemble_predictions_test.shape,
                                             dtype=np.int32)
                        if (self.task_type != MULTICLASS_CLASSIFICATION) or (
                                    ensemble_predictions_test.shape[1] == 1):
                            bin_array[ensemble_predictions_test >= 0.5] = 1
                        else:
                            sample_num = ensemble_predictions_test.shape[0]
                            for i in range(sample_num):
                                j = np.argmax(ensemble_predictions_test[i, :])
                                bin_array[i, j] = 1
                        ensemble_predictions_test = bin_array
                    if self.task_type in CLASSIFICATION_TASKS:
                        if ensemble_predictions_test.size < (20000 * 20):
                            precision = 3
                        else:
                            precision = 2
                    else:
                        if ensemble_predictions_test.size > 1000000:
                            precision = 4
                        else:
                            precision = 6

                backend.save_predictions_as_txt(ensemble_predictions_test,
                                                'test', index_run, prefix=self.dataset_name,
                                                precision=precision)
            else:
                self.logger.info('Could not find as many test set predictions (%d) as '
                             'ensemble predictions (%d)!',
                            len(dir_test_list), len(dir_ensemble_list))

            del all_predictions_test

            current_num_models = len(dir_ensemble_list)
            watch.stop_task('index_run' + str(index_run))
            time_iter = watch.get_wall_dur('index_run' + str(index_run))
            used_time = watch.wall_elapsed('ensemble_builder')
            index_run += 1
        return
開發者ID:Hanshan1988,項目名稱:auto-sklearn,代碼行數:104,代碼來源:ensemble_builder.py

示例2: main

# 需要導入模塊: from autosklearn.util import StopWatch [as 別名]
# 或者: from autosklearn.util.StopWatch import get_wall_dur [as 別名]

#.........這裏部分代碼省略.........
                                                precision)

#        if len(all_predictions_train) == len(all_predictions_test) == len(
#                all_predictions_valid) == 0:
        if len(include_num_runs) == 0:
            logger.error('All models do just random guessing')
            time.sleep(2)
            continue

        else:
            try:
                indices, trajectory = ensemble_selection(
                    np.array(all_predictions_train), targets_ensemble,
                    ensemble_size, task_type, metric)

                logger.info('Trajectory and indices!')
                logger.info(trajectory)
                logger.info(indices)

            except ValueError as e:
                logger.error('Caught ValueError: ' + str(e))
                used_time = watch.wall_elapsed('ensemble_builder')
                time.sleep(2)
                continue
            except Exception as e:
                logger.error('Caught error! %s', e.message)
                used_time = watch.wall_elapsed('ensemble_builder')
                time.sleep(2)
                continue

            # Output the score
            logger.info('Training performance: %f' % trajectory[-1])

            # Print the ensemble members:
            ensemble_members_run_numbers = dict()
            ensemble_members = Counter(indices).most_common()
            ensemble_members_string = 'Ensemble members:\n'
            logger.info(ensemble_members)
            for ensemble_member in ensemble_members:
                weight = float(ensemble_member[1]) / len(indices)
                ensemble_members_string += \
                    ('    %s; weight: %10f; performance: %10f\n' %
                     (indices_to_model_names[ensemble_member[0]],
                      weight,
                      model_names_to_scores[
                         indices_to_model_names[ensemble_member[0]]]))

                ensemble_members_run_numbers[
                    indices_to_run_num[
                        ensemble_member[0]]] = weight
            logger.info(ensemble_members_string)

        # Save the ensemble indices for later use!
        backend.save_ensemble_indices_weights(ensemble_members_run_numbers,
                                              index_run, seed)

        all_predictions_valid = get_predictions(dir_valid,
                                                dir_valid_list,
                                                include_num_runs,
                                                model_and_automl_re,
                                                precision)

        # Save predictions for valid and test data set
        if len(dir_valid_list) == len(dir_ensemble_list):
            all_predictions_valid = np.array(all_predictions_valid)
            ensemble_predictions_valid = np.mean(
                all_predictions_valid[indices.astype(int)], axis=0)
            backend.save_predictions_as_txt(ensemble_predictions_valid,
                                            'valid', index_run, prefix=basename)
        else:
            logger.info('Could not find as many validation set predictions (%d)'
                         'as ensemble predictions (%d)!.',
                        len(dir_valid_list), len(dir_ensemble_list))

        del all_predictions_valid
        all_predictions_test = get_predictions(dir_test,
                                               dir_test_list,
                                               include_num_runs,
                                               model_and_automl_re,
                                               precision)

        if len(dir_test_list) == len(dir_ensemble_list):
            all_predictions_test = np.array(all_predictions_test)
            ensemble_predictions_test = np.mean(
                all_predictions_test[indices.astype(int)], axis=0)
            backend.save_predictions_as_txt(ensemble_predictions_test,
                                            'test', index_run, prefix=basename)
        else:
            logger.info('Could not find as many test set predictions (%d) as '
                         'ensemble predictions (%d)!',
                        len(dir_test_list), len(dir_ensemble_list))

        del all_predictions_test

        current_num_models = len(dir_ensemble_list)
        watch.stop_task('ensemble_iter_' + str(index_run))
        time_iter = watch.get_wall_dur('ensemble_iter_' + str(index_run))
        used_time = watch.wall_elapsed('ensemble_builder')
        index_run += 1
    return
開發者ID:ixtel,項目名稱:auto-sklearn,代碼行數:104,代碼來源:ensemble_selection_script.py

示例3: main

# 需要導入模塊: from autosklearn.util import StopWatch [as 別名]
# 或者: from autosklearn.util.StopWatch import get_wall_dur [as 別名]

#.........這裏部分代碼省略.........
                # the current model if it is better than random
                elif len(scores_nbest) < ensemble_size:
                    scores_nbest.append(score)
                    indices_nbest.append(model_idx)
                    exclude_mask.append(False)
                else:
                    # Take the worst performing model in our ensemble so far
                    idx = np.argmin(np.array([scores_nbest]))

                    # If the current model is better than the worst model in
                    # our ensemble replace it by the current model
                    if scores_nbest[idx] < score:
                        logger.debug(
                            'Worst model in our ensemble: %d with score %f will be replaced by model %d with score %f'
                            % (idx, scores_nbest[idx], model_idx, score))
                        scores_nbest[idx] = score
                        # Exclude the old model
                        exclude_mask[int(indices_nbest[idx])] = True
                        indices_nbest[idx] = model_idx
                        exclude_mask.append(False)
                    # Otherwise exclude the current model from the ensemble
                    else:
                        exclude_mask.append(True)

            else:
                # Load all predictions that are better than random
                if score <= 0.001:
                    exclude_mask.append(True)
                    logger.error('Model only predicts at random: ' + f +
                                  ' has score: ' + str(score))
                else:
                    exclude_mask.append(False)
                    all_predictions_train.append(predictions)

            model_idx += 1
            print(exclude_mask)

        all_predictions_valid = get_predictions(dir_valid,
                                                dir_valid_list,
                                                exclude_mask)
        all_predictions_test = get_predictions(dir_test,
                                               dir_test_list,
                                               exclude_mask)

        if len(all_predictions_train) == len(all_predictions_test) == len(
                all_predictions_valid) == 0:
            logger.error('All models do just random guessing')
            time.sleep(2)
            continue

        if len(all_predictions_train) == 1:
            logger.debug('Only one model so far we just copy its predictions')
            Y_valid = all_predictions_valid[0]
            Y_test = all_predictions_test[0]
        else:
            try:
                # Compute the weights for the ensemble
                # Use equally initialized weights
                n_models = len(all_predictions_train)
                init_weights = np.ones([n_models]) / n_models

                weights = weighted_ensemble(logger.debug, np.array(all_predictions_train),
                                            true_labels, task_type, metric,
                                            init_weights)
            except ValueError:
                logger.error('Caught ValueError!')
                used_time = watch.wall_elapsed('ensemble_builder')
                continue
            except Exception:
                logger.error('Caught error!')
                used_time = watch.wall_elapsed('ensemble_builder')
                continue

            # Compute the ensemble predictions for the valid data
            Y_valid = ensemble_prediction(np.array(all_predictions_valid),
                                          weights)

            # Compute the ensemble predictions for the test data
            Y_test = ensemble_prediction(np.array(all_predictions_test),
                                         weights)

        # Save predictions for valid and test data set
        filename_test = os.path.join(
            output_dir,
            basename + '_valid_' + str(index_run).zfill(3) + '.predict')
        save_predictions(os.path.join(predictions_dir,
                                                filename_test), Y_valid)

        filename_test = os.path.join(
            output_dir,
            basename + '_test_' + str(index_run).zfill(3) + '.predict')
        save_predictions(os.path.join(predictions_dir,
                                                filename_test), Y_test)

        current_num_models = len(dir_ensemble_list)
        watch.stop_task('ensemble_iter_' + str(index_run))
        time_iter = watch.get_wall_dur('ensemble_iter_' + str(index_run))
        used_time = watch.wall_elapsed('ensemble_builder')
        index_run += 1
    return
開發者ID:WarmongeR1,項目名稱:auto-sklearn,代碼行數:104,代碼來源:ensemble_script.py

示例4: main

# 需要導入模塊: from autosklearn.util import StopWatch [as 別名]
# 或者: from autosklearn.util.StopWatch import get_wall_dur [as 別名]

#.........這裏部分代碼省略.........
                    include_num_runs.append((automl_seed, num_run))

            model_idx += 1

        # If there is no model better than random guessing, we have to use
        # all models which do random guessing
        if len(include_num_runs) == 0:
            include_num_runs = backup_num_runs

        indices_to_model_names = dict()
        indices_to_run_num = dict()
        for i, model_name in enumerate(dir_ensemble_list):
            match = model_and_automl_re.search(model_name)
            automl_seed = int(match.group(1))
            num_run = int(match.group(2))
            if (automl_seed, num_run) in include_num_runs:
                num_indices = len(indices_to_model_names)
                indices_to_model_names[num_indices] = model_name
                indices_to_run_num[num_indices] = (automl_seed, num_run)

        try:
            all_predictions_train, all_predictions_valid, all_predictions_test =\
                get_all_predictions(dir_ensemble, dir_ensemble_list,
                                    dir_valid, dir_valid_list,
                                    dir_test, dir_test_list,
                                    include_num_runs,
                                    model_and_automl_re,
                                    precision)
        except IOError:
            logger.error('Could not load the predictions.')
            continue

        if len(include_num_runs) == 0:
            logger.error('All models do just random guessing')
            time.sleep(2)
            continue

        else:
            ensemble = EnsembleSelection(ensemble_size=ensemble_size,
                                         task_type=task_type,
                                         metric=metric)

            try:
                ensemble.fit(all_predictions_train, targets_ensemble,
                             include_num_runs)
                logger.info(ensemble)

            except ValueError as e:
                logger.error('Caught ValueError: ' + str(e))
                used_time = watch.wall_elapsed('ensemble_builder')
                time.sleep(2)
                continue
            except IndexError as e:
                logger.error('Caught IndexError: ' + str(e))
                used_time = watch.wall_elapsed('ensemble_builder')
                time.sleep(2)
                continue
            except Exception as e:
                logger.error('Caught error! %s', e.message)
                used_time = watch.wall_elapsed('ensemble_builder')
                time.sleep(2)
                continue

            # Output the score
            logger.info('Training performance: %f' % ensemble.train_score_)

        # Save the ensemble for later use in the main auto-sklearn module!
        backend.save_ensemble(ensemble, index_run, seed)

        # Save predictions for valid and test data set
        if len(dir_valid_list) == len(dir_ensemble_list):
            all_predictions_valid = np.array(all_predictions_valid)
            ensemble_predictions_valid = ensemble.predict(all_predictions_valid)
            backend.save_predictions_as_txt(ensemble_predictions_valid,
                                            'valid', index_run, prefix=dataset_name)
        else:
            logger.info('Could not find as many validation set predictions (%d)'
                         'as ensemble predictions (%d)!.',
                        len(dir_valid_list), len(dir_ensemble_list))

        del all_predictions_valid

        if len(dir_test_list) == len(dir_ensemble_list):
            all_predictions_test = np.array(all_predictions_test)
            ensemble_predictions_test = ensemble.predict(all_predictions_test)
            backend.save_predictions_as_txt(ensemble_predictions_test,
                                            'test', index_run, prefix=dataset_name)
        else:
            logger.info('Could not find as many test set predictions (%d) as '
                         'ensemble predictions (%d)!',
                        len(dir_test_list), len(dir_ensemble_list))

        del all_predictions_test

        current_num_models = len(dir_ensemble_list)
        watch.stop_task('ensemble_iter_' + str(index_run))
        time_iter = watch.get_wall_dur('ensemble_iter_' + str(index_run))
        used_time = watch.wall_elapsed('ensemble_builder')
        index_run += 1
    return
開發者ID:Allen1203,項目名稱:auto-sklearn,代碼行數:104,代碼來源:ensemble_selection_script.py

示例5: main

# 需要導入模塊: from autosklearn.util import StopWatch [as 別名]
# 或者: from autosklearn.util.StopWatch import get_wall_dur [as 別名]

#.........這裏部分代碼省略.........
                                               include_num_runs,
                                               re_num_run)

        if len(all_predictions_train) == len(all_predictions_test) == len(
                all_predictions_valid) == 0:
            logger.error('All models do just random guessing')
            time.sleep(2)
            continue

        elif len(all_predictions_train) == 1:
            logger.debug('Only one model so far we just copy its predictions')
            ensemble_members_run_numbers = {0: 1.0}

            # Output the score
            logger.info('Training performance: %f' %
                         np.max(model_names_to_scores.values()))
        else:
            try:
                indices, trajectory = ensemble_selection(
                    np.array(all_predictions_train), true_labels,
                    ensemble_size, task_type, metric)

                logger.info('Trajectory and indices!')
                logger.info(trajectory)
                logger.info(indices)

            except ValueError as e:
                logger.error('Caught ValueError: ' + str(e))
                used_time = watch.wall_elapsed('ensemble_builder')
                continue
            except Exception as e:
                logger.error('Caught error! %s', e.message)
                used_time = watch.wall_elapsed('ensemble_builder')
                continue

            # Output the score
            logger.info('Training performance: %f' % trajectory[-1])

            # Print the ensemble members:
            ensemble_members_run_numbers = dict()
            ensemble_members = Counter(indices).most_common()
            ensemble_members_string = 'Ensemble members:\n'
            logger.info(ensemble_members)
            for ensemble_member in ensemble_members:
                weight = float(ensemble_member[1]) / len(indices)
                ensemble_members_string += \
                    ('    %s; weight: %10f; performance: %10f\n' %
                     (indices_to_model_names[ensemble_member[0]],
                      weight,
                      model_names_to_scores[
                         indices_to_model_names[ensemble_member[0]]]))

                ensemble_members_run_numbers[
                    indices_to_run_num[
                        ensemble_member[0]]] = weight
            logger.info(ensemble_members_string)

        # Save the ensemble indices for later use!
        filename_indices = os.path.join(indices_output_dir,
                                        str(index_run).zfill(5) + '.indices')

        logger.info(ensemble_members_run_numbers)
        with open(filename_indices, 'w') as fh:
            pickle.dump(ensemble_members_run_numbers, fh)

        # Save predictions for valid and test data set
        if len(dir_valid_list) == len(dir_ensemble_list):
            ensemble_predictions_valid = np.mean(
                all_predictions_valid[indices.astype(int)],
                axis=0)
            filename_test = os.path.join(
                output_dir,
                basename + '_valid_' + str(index_run).zfill(3) + '.predict')
            save_predictions(
                os.path.join(predictions_dir, filename_test),
                ensemble_predictions_valid)
        else:
            logger.info('Could not find as many validation set predictions '
                         'as ensemble predictions!.')

        if len(dir_test_list) == len(dir_ensemble_list):
            ensemble_predictions_test = np.mean(
                all_predictions_test[indices.astype(int)],
                axis=0)
            filename_test = os.path.join(
                output_dir,
                basename + '_test_' + str(index_run).zfill(3) + '.predict')
            save_predictions(
                os.path.join(predictions_dir, filename_test),
                ensemble_predictions_test)
        else:
            logger.info('Could not find as many test set predictions as '
                         'ensemble predictions!')

        current_num_models = len(dir_ensemble_list)
        watch.stop_task('ensemble_iter_' + str(index_run))
        time_iter = watch.get_wall_dur('ensemble_iter_' + str(index_run))
        used_time = watch.wall_elapsed('ensemble_builder')
        index_run += 1
    return
開發者ID:WarmongeR1,項目名稱:auto-sklearn,代碼行數:104,代碼來源:ensemble_selection_script.py


注:本文中的autosklearn.util.StopWatch.get_wall_dur方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。