當前位置: 首頁>>代碼示例>>Python>>正文


Python LinearAlgebra.singular_value_decomposition方法代碼示例

本文整理匯總了Python中LinearAlgebra.singular_value_decomposition方法的典型用法代碼示例。如果您正苦於以下問題:Python LinearAlgebra.singular_value_decomposition方法的具體用法?Python LinearAlgebra.singular_value_decomposition怎麽用?Python LinearAlgebra.singular_value_decomposition使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在LinearAlgebra的用法示例。


在下文中一共展示了LinearAlgebra.singular_value_decomposition方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: import LinearAlgebra [as 別名]
# 或者: from LinearAlgebra import singular_value_decomposition [as 別名]
    def __init__(self, atoms, constraints):
	self.atoms = atoms
	natoms = len(self.atoms)
	nconst = reduce(operator.add, map(len, constraints))
	b = Numeric.zeros((nconst, natoms), Numeric.Float)
	c = Numeric.zeros((nconst,), Numeric.Float)
	i = 0
	for cons in constraints:
	    cons.setCoefficients(self.atoms, b, c, i)
	    i = i + len(cons)
	u, s, vt = LinearAlgebra.singular_value_decomposition(b)
	self.rank = 0
	for i in range(min(natoms, nconst)):
	    if s[i] > 0.:
		self.rank = self.rank + 1
	self.b = b
	self.bi = LinearAlgebra.generalized_inverse(b)
	self.p = Numeric.identity(natoms)-Numeric.dot(self.bi, self.b)
	self.c = c
	self.bi_c = Numeric.dot(self.bi, c)
	c_test = Numeric.dot(self.b, self.bi_c)
	if Numeric.add.reduce((c_test-c)**2)/nconst > 1.e-12:
	    Utility.warning("The charge constraints are inconsistent."
			    " They will be applied as a least-squares"
			    " condition.")
開發者ID:fxia22,項目名稱:ASM_xf,代碼行數:27,代碼來源:ChargeFit.py

示例2: multivariate_normal

# 需要導入模塊: import LinearAlgebra [as 別名]
# 或者: from LinearAlgebra import singular_value_decomposition [as 別名]
def multivariate_normal(mean, cov, shape=[]):
       """multivariate_normal(mean, cov) or multivariate_normal(mean, cov, [m, n, ...])
          returns an array containing multivariate normally distributed random numbers
          with specified mean and covariance.

          mean must be a 1 dimensional array. cov must be a square two dimensional
          array with the same number of rows and columns as mean has elements.

          The first form returns a single 1-D array containing a multivariate
          normal.

          The second form returns an array of shape (m, n, ..., cov.shape[0]).
          In this case, output[i,j,...,:] is a 1-D array containing a multivariate
          normal."""
       # Check preconditions on arguments
       mean = Numeric.array(mean)
       cov = Numeric.array(cov)
       if len(mean.shape) != 1:
              raise ArgumentError, "mean must be 1 dimensional."
       if (len(cov.shape) != 2) or (cov.shape[0] != cov.shape[1]):
              raise ArgumentError, "cov must be 2 dimensional and square."
       if mean.shape[0] != cov.shape[0]:
              raise ArgumentError, "mean and cov must have same length."
       # Compute shape of output
       if isinstance(shape, IntType): shape = [shape]
       final_shape = list(shape[:])
       final_shape.append(mean.shape[0])
       # Create a matrix of independent standard normally distributed random
       # numbers. The matrix has rows with the same length as mean and as
       # many rows are necessary to form a matrix of shape final_shape.
       x = ranlib.standard_normal(Numeric.multiply.reduce(final_shape))
       x.shape = (Numeric.multiply.reduce(final_shape[0:len(final_shape)-1]),
                  mean.shape[0])
       # Transform matrix of standard normals into matrix where each row
       # contains multivariate normals with the desired covariance.
       # Compute A such that matrixmultiply(transpose(A),A) == cov.
       # Then the matrix products of the rows of x and A has the desired
       # covariance. Note that sqrt(s)*v where (u,s,v) is the singular value
       # decomposition of cov is such an A.
       (u,s,v) = LinearAlgebra.singular_value_decomposition(cov)
       x = Numeric.matrixmultiply(x*Numeric.sqrt(s),v)
       # The rows of x now have the correct covariance but mean 0. Add
       # mean to each row. Then each row will have mean mean.
       Numeric.add(mean,x,x)
       x.shape = final_shape
       return x
開發者ID:tomaszpg,項目名稱:PogodaTMC,代碼行數:48,代碼來源:RandomArray.py

示例3: testSVD

# 需要導入模塊: import LinearAlgebra [as 別名]
# 或者: from LinearAlgebra import singular_value_decomposition [as 別名]
 def testSVD(self):
     """
     From bug #930735. Numbers redone in Maple.
     """
     import LinearAlgebra
     a = Numeric.array([[2,4],[1,3],[0,0],[0,0]])
     u, s, vt = LinearAlgebra.singular_value_decomposition(a)
     s34d2 = math.sqrt(34.)/2
     s26d2 = math.sqrt(26.)/2
     assert_eq(s, Numeric.array([s34d2+s26d2, s34d2-s26d2]))
     vt_c = Numeric.array([[-0.404553584833756919, -0.914514295677304467],
                           [-0.914514295677304467,  0.404553584833756919]])
     assert_eq(vt, vt_c)
     u_c = Numeric.array([[-0.817415560470363233, -0.576048436766320782],
                          [-0.576048436766320782,  0.817415560470363344],
                          [0, 0],
                          [0, 0]])
     assert_eq(u, u_c)
     assert_eq(a, Numeric.dot(u*s, vt))
開發者ID:mikeswamp,項目名稱:numeric_copy,代碼行數:21,代碼來源:test.py

示例4: svd

# 需要導入模塊: import LinearAlgebra [as 別名]
# 或者: from LinearAlgebra import singular_value_decomposition [as 別名]
def svd(v):
    """[u,x,v] = svd(m) return the singular value decomposition of m.
    """
    return LinearAlgebra.singular_value_decomposition(v)
開發者ID:tomaszpg,項目名稱:PogodaTMC,代碼行數:6,代碼來源:MLab.py

示例5:

# 需要導入模塊: import LinearAlgebra [as 別名]
# 或者: from LinearAlgebra import singular_value_decomposition [as 別名]
import ranlib
開發者ID:mcyril,項目名稱:ravel-ftn,代碼行數:3,代碼來源:RandomArray.py


注:本文中的LinearAlgebra.singular_value_decomposition方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。