本文整理匯總了Python中LinearAlgebra.inverse方法的典型用法代碼示例。如果您正苦於以下問題:Python LinearAlgebra.inverse方法的具體用法?Python LinearAlgebra.inverse怎麽用?Python LinearAlgebra.inverse使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類LinearAlgebra
的用法示例。
在下文中一共展示了LinearAlgebra.inverse方法的13個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: render
# 需要導入模塊: import LinearAlgebra [as 別名]
# 或者: from LinearAlgebra import inverse [as 別名]
def render(self, rstate):
# Set up the texture matrix as the modelview inverse
m = glGetFloatv(GL_MODELVIEW_MATRIX)
glMatrixMode(GL_TEXTURE)
m = LinearAlgebra.inverse(m)
m[3][0] = 0
m[3][1] = 0
m[3][2] = 0
glLoadMatrixf(m)
glMatrixMode(GL_MODELVIEW)
# Set up texture coordinate generation
glTexEnvfv(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE)
glTexGenfv(GL_S, GL_TEXTURE_GEN_MODE, GL_REFLECTION_MAP_EXT)
glTexGenfv(GL_T, GL_TEXTURE_GEN_MODE, GL_REFLECTION_MAP_EXT)
glTexGenfv(GL_R, GL_TEXTURE_GEN_MODE, GL_REFLECTION_MAP_EXT)
glEnable(GL_TEXTURE_GEN_S)
glEnable(GL_TEXTURE_GEN_T)
glEnable(GL_TEXTURE_GEN_R)
# We're blending on top of existing polygons, so use the same tricks as the decal pass
DecalRenderPass.render(self, rstate)
# Clean up
glMatrixMode(GL_TEXTURE)
glLoadIdentity()
glMatrixMode(GL_MODELVIEW)
glDisable(GL_TEXTURE_GEN_S)
glDisable(GL_TEXTURE_GEN_T)
glDisable(GL_TEXTURE_GEN_R)
示例2: __pow__
# 需要導入模塊: import LinearAlgebra [as 別名]
# 或者: from LinearAlgebra import inverse [as 別名]
def __pow__(self, other):
shape = self.array.shape
if len(shape)!=2 or shape[0]!=shape[1]:
raise TypeError, "matrix is not square"
if type(other) in (type(1), type(1L)):
if other==0:
return Matrix(identity(shape[0]))
if other<0:
result=Matrix(LinearAlgebra.inverse(self.array))
x=Matrix(result)
other=-other
else:
result=self
x=result
if other <= 3:
while(other>1):
result=result*x
other=other-1
return result
# binary decomposition to reduce the number of Matrix
# Multiplies for other > 3.
beta = _binary(other)
t = len(beta)
Z,q = x.copy(),0
while beta[t-q-1] == '0':
Z *= Z
q += 1
result = Z.copy()
for k in range(q+1,t):
Z *= Z
if beta[t-k-1] == '1':
result *= Z
return result
else:
raise TypeError, "exponent must be an integer"
示例3: testgeneralizedInverse
# 需要導入模塊: import LinearAlgebra [as 別名]
# 或者: from LinearAlgebra import inverse [as 別名]
def testgeneralizedInverse (self):
"Test LinearAlgebra.generalized_inverse"
import LinearAlgebra
ca = Numeric.array([[1,1-1j],[0,1]])
cai = LinearAlgebra.inverse(ca)
cai2 = LinearAlgebra.generalized_inverse(ca)
self.failUnless(eq(cai, cai2))
示例4: inversedot_woodbury
# 需要導入模塊: import LinearAlgebra [as 別名]
# 或者: from LinearAlgebra import inverse [as 別名]
def inversedot_woodbury(m, v):
a = zeros((n, 11), Float)
for i in range(n):
for j in range(max(-7, -i), min(4, n - i)):
a[i, j + 7] = m[i, i + j]
print a
al, indx, d = band.bandec(a, 7, 3)
VtZ = identity(4, Float)
Z = zeros((n, 4), Float)
for i in range(4):
u = zeros(n, Float)
for j in range(4):
u[j] = m[j, n - 4 + i]
band.banbks(a, 7, 3, al, indx, u)
for k in range(n):
Z[k, i] = u[k]
#Z[:,i] = u
for j in range(4):
VtZ[j, i] += u[n - 4 + j]
print Z
print VtZ
H = la.inverse(VtZ)
print H
band.banbks(a, 7, 3, al, indx, v)
return(v - dot(Z, dot(H, v[n - 4:])))
示例5: inverse
# 需要導入模塊: import LinearAlgebra [as 別名]
# 或者: from LinearAlgebra import inverse [as 別名]
def inverse(self):
"""
@returns: the inverse
@rtype: L{quaternion}
"""
import LinearAlgebra
inverse = LinearAlgebra.inverse(self.asMatrix())
return quaternion(inverse[:, 0])
示例6: inversedot
# 需要導入模塊: import LinearAlgebra [as 別名]
# 或者: from LinearAlgebra import inverse [as 別名]
def inversedot(m, v):
return dot(la.inverse(m), v)
n, nn = m.shape
if 1:
for i in range(n):
sys.stdout.write('% ')
for j in range(n):
if m[i, j] > 0: sys.stdout.write('+ ')
elif m[i, j] < 0: sys.stdout.write('- ')
else: sys.stdout.write(' ')
sys.stdout.write('\n')
cyclic = False
for i in range(4):
for j in range(n - 4, n):
if m[i, j] != 0:
cyclic = True
print '% cyclic:', cyclic
if not cyclic:
a = zeros((n, 11), Float)
for i in range(n):
for j in range(max(-5, -i), min(6, n - i)):
a[i, j + 5] = m[i, i + j]
for i in range(n):
sys.stdout.write('% ')
for j in range(11):
if a[i, j] > 0: sys.stdout.write('+ ')
elif a[i, j] < 0: sys.stdout.write('- ')
else: sys.stdout.write(' ')
sys.stdout.write('\n')
al, indx, d = band.bandec(a, 5, 5)
print a
band.banbks(a, 5, 5, al, indx, v)
return v
else:
#return inversedot_woodbury(m, v)
bign = 3 * n
a = zeros((bign, 11), Float)
u = zeros(bign, Float)
for i in range(bign):
u[i] = v[i % n]
for j in range(-7, 4):
a[i, j + 7] = m[i % n, (i + j + 7 * n) % n]
#print a
if 1:
for i in range(bign):
sys.stdout.write('% ')
for j in range(11):
if a[i, j] > 0: sys.stdout.write('+ ')
elif a[i, j] < 0: sys.stdout.write('- ')
else: sys.stdout.write(' ')
sys.stdout.write('\n')
#print u
al, indx, d = band.bandec(a, 5, 5)
band.banbks(a, 5, 5, al, indx, u)
#print u
return u[n + 2: 2 * n + 2]
示例7: __getattr__
# 需要導入模塊: import LinearAlgebra [as 別名]
# 或者: from LinearAlgebra import inverse [as 別名]
def __getattr__(self, attr):
if attr == 'A':
return squeeze(self.array)
elif attr == 'T':
return Matrix(Numeric.transpose(self.array))
elif attr == 'H':
if len(self.array.shape) == 1:
self.array.shape = (1,self.array.shape[0])
return Matrix(Numeric.conjugate(Numeric.transpose(self.array)))
elif attr == 'I':
return Matrix(LinearAlgebra.inverse(self.array))
elif attr == 'real':
return Matrix(self.array.real)
elif attr == 'imag':
return Matrix(self.array.imag)
elif attr == 'flat':
return Matrix(self.array.flat)
else:
raise AttributeError, attr + " not found."
示例8: ComputeComplianceMatrix
# 需要導入模塊: import LinearAlgebra [as 別名]
# 或者: from LinearAlgebra import inverse [as 別名]
def ComputeComplianceMatrix(self):
print "In BoxMinimizer.ComputeComplianceMatrix"
bm = self.bulkModulus
mu = self.shearModulus
Lambda = bm - (2./3) * mu
ecMatrix = num.zeros((6,6),num.Float)
for idx in xrange(0,3):
ecMatrix[idx, idx] = Lambda + 2*mu
ecMatrix[0,1] = Lambda
ecMatrix[1,0] = Lambda
ecMatrix[0,2] = Lambda
ecMatrix[2,0] = Lambda
ecMatrix[1,2] = Lambda
ecMatrix[2,1] = Lambda
for idx in xrange(3,6):
ecMatrix[idx, idx] = mu
self.compliance = LA.inverse(ecMatrix)
示例9: printarr
# 需要導入模塊: import LinearAlgebra [as 別名]
# 或者: from LinearAlgebra import inverse [as 別名]
m[4 * i + 5][4 * i + 0] = 0
m[4 * i + 5][4 * i + 1] = 0
m[4 * i + 5][4 * i + 2] = 1
m[4 * i + 5][4 * i + 3] = .5
m[4 * i + 5][4 * i + 4] = 0
m[4 * i + 5][4 * i + 5] = 0
m[4 * i + 5][4 * i + 6] = -1
m[4 * i + 5][4 * i + 7] = .5
m[n * 4 + 2][2] = 1
m[n * 4 + 3][3] = 1
m[0][n * 4 + 2] = 1
m[1][n * 4 + 3] = 1
def printarr(m):
for j in range(n * 4 + 4):
for i in range(n * 4 + 4):
print '%6.1f' % m[j][i],
print ''
sys.output_line_width = 160
#print array2string(m, precision = 3)
mi = la.inverse(m)
#printarr(mi)
print ''
for j in range(n + 1):
for k in range(4):
print '%7.2f' % mi[j * 4 + k][(n / 2) * 4 + 2],
print ''
示例10: polyfitw
# 需要導入模塊: import LinearAlgebra [as 別名]
# 或者: from LinearAlgebra import inverse [as 別名]
def polyfitw(x, y, w, ndegree, return_fit=0):
"""
Performs a weighted least-squares polynomial fit with optional error estimates.
Inputs:
x:
The independent variable vector.
y:
The dependent variable vector. This vector should be the same
length as X.
w:
The vector of weights. This vector should be same length as
X and Y.
ndegree:
The degree of polynomial to fit.
Outputs:
If return_fit==0 (the default) then polyfitw returns only C, a vector of
coefficients of length ndegree+1.
If return_fit!=0 then polyfitw returns a tuple (c, yfit, yband, sigma, a)
yfit:
The vector of calculated Y's. Has an error of + or - Yband.
yband:
Error estimate for each point = 1 sigma.
sigma:
The standard deviation in Y units.
a:
Correlation matrix of the coefficients.
Written by: George Lawrence, LASP, University of Colorado,
December, 1981 in IDL.
Weights added, April, 1987, G. Lawrence
Fixed bug with checking number of params, November, 1998,
Mark Rivers.
Python version, May 2002, Mark Rivers
"""
n = min(len(x), len(y)) # size = smaller of x,y
m = ndegree + 1 # number of elements in coeff vector
a = Numeric.zeros((m,m),Numeric.Float) # least square matrix, weighted matrix
b = Numeric.zeros(m,Numeric.Float) # will contain sum w*y*x^j
z = Numeric.ones(n,Numeric.Float) # basis vector for constant term
a[0,0] = Numeric.sum(w)
b[0] = Numeric.sum(w*y)
for p in range(1, 2*ndegree+1): # power loop
z = z*x # z is now x^p
if (p < m): b[p] = Numeric.sum(w*y*z) # b is sum w*y*x^j
sum = Numeric.sum(w*z)
for j in range(max(0,(p-ndegree)), min(ndegree,p)+1):
a[j,p-j] = sum
a = LinearAlgebra.inverse(a)
c = Numeric.matrixmultiply(b, a)
if (return_fit == 0):
return c # exit if only fit coefficients are wanted
# compute optional output parameters.
yfit = Numeric.zeros(n,Numeric.Float)+c[0] # one-sigma error estimates, init
for k in range(1, ndegree +1):
yfit = yfit + c[k]*(x**k) # sum basis vectors
var = Numeric.sum((yfit-y)**2 )/(n-m) # variance estimate, unbiased
sigma = Numeric.sqrt(var)
yband = Numeric.zeros(n,Numeric.Float) + a[0,0]
z = Numeric.ones(n,Numeric.Float)
for p in range(1,2*ndegree+1): # compute correlated error estimates on y
z = z*x # z is now x^p
sum = 0.
for j in range(max(0, (p - ndegree)), min(ndegree, p)+1):
sum = sum + a[j,p-j]
yband = yband + sum * z # add in all the error sources
yband = yband*var
yband = Numeric.sqrt(yband)
return c, yfit, yband, sigma, a
示例11: get_info
# 需要導入模塊: import LinearAlgebra [as 別名]
# 或者: from LinearAlgebra import inverse [as 別名]
cell, atoms = get_info(filename)
print "Old cell:", cell
print toparams(cell)
#
# The transformation matrix is hardwired in this version.
#
matrix = Numeric.array([[ 0., -1., 1.], [ 0., 0., 1.], [ -2., 2. , -1.]])
emat = Numeric.array([[ 0., -1., 1., 0.28488],
[ 0., 0., 1.,0.12343],
[ -2., 2. , -1., 0.0],
[ 0.0, 0.0, 0.0, 1.0] ])
invemat = LinearAlgebra.inverse(emat)
# Extend matrix to deal with translations, in the crystallographic way
#
print atoms
natoms = atoms.shape[0]
ones= 1 + Numeric.zeros((natoms,1))
print ones.shape
extatom = Numeric.concatenate((atoms,ones),axis=1)
print extatom
print "---------------"
newcell = Numeric.dot(matrix,cell)
print newcell
print toparams(newcell)
示例12: inverse
# 需要導入模塊: import LinearAlgebra [as 別名]
# 或者: from LinearAlgebra import inverse [as 別名]
def inverse(self):
"Returns the inverse."
import LinearAlgebra
inverse = LinearAlgebra.inverse(self.asMatrix())
return Quaternion(inverse[:, 0])
示例13: solve
# 需要導入模塊: import LinearAlgebra [as 別名]
# 或者: from LinearAlgebra import inverse [as 別名]
def solve(path):
if path[0][2] == '{': closed = 0
else: closed = 1
dxs = []
dys = []
chords = []
for i in range(len(path) - 1):
dxs.append(path[i + 1][0] - path[i][0])
dys.append(path[i + 1][1] - path[i][1])
chords.append(hypot(dxs[-1], dys[-1]))
nominal_th = []
nominal_k = []
if not closed:
nominal_th.append(atan2(dys[0], dxs[0]))
nominal_k.append(0)
for i in range(1 - closed, len(path) - 1 + closed):
x0, y0, t0 = path[(i + len(path) - 1) % len(path)]
x1, y1, t1 = path[i]
x2, y2, t2 = path[(i + 1) % len(path)]
dx = float(x2 - x0)
dy = float(y2 - y0)
ir2 = dx * dx + dy * dy
x = ((x1 - x0) * dx + (y1 - y0) * dy) / ir2
y = ((y1 - y0) * dx - (x1 - x0) * dy) / ir2
th = fit_arc(x, y) + atan2(dy, dx)
bend_angle = mod_2pi(atan2(y2 - y1, x2 - x1) - atan2(y1 - y0, x1 - x0))
k = 2 * bend_angle/(hypot(y2 - y1, x2 - x1) + hypot(y1 - y0, x1 - x0))
print '% bend angle', bend_angle, 'k', k
if t1 == ']':
th = atan2(y1 - y0, x1 - x0)
k = 0
elif t1 == '[':
th = atan2(y2 - y1, x2 - x1)
k = 0
nominal_th.append(th)
nominal_k.append(k)
if not closed:
nominal_th.append(atan2(dys[-1], dxs[-1]))
nominal_k.append(0)
print '%', nominal_th
print '0 0 1 setrgbcolor .5 setlinewidth'
plot_path(path, nominal_th, nominal_k)
plot_ks(path, nominal_th, nominal_k)
th = nominal_th[:]
k = nominal_k[:]
n = 8
for i in range(n):
ev = make_error_vec(path, th, k)
m = make_matrix(path, th, k)
#print m
#print 'inverse:'
#print la.inverse(m)
v = dot(la.inverse(m), ev)
#print v
for j in range(len(path)):
th[j] += 1. * v[2 * j]
k[j] -= 1. * .5 * v[2 * j + 1]
if i == n - 1:
print '0 0 0 setrgbcolor 1 setlinewidth'
elif i == 0:
print '1 0 0 setrgbcolor'
elif i == 1:
print '0 0.5 0 setrgbcolor'
elif i == 2:
print '0.3 0.3 0.3 setrgbcolor'
plot_path(path, th, k)
plot_ks(path, th, k)
print '% th:', th
print '% k:', k