本文整理匯總了Python中LinearAlgebra.eigenvectors方法的典型用法代碼示例。如果您正苦於以下問題:Python LinearAlgebra.eigenvectors方法的具體用法?Python LinearAlgebra.eigenvectors怎麽用?Python LinearAlgebra.eigenvectors使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類LinearAlgebra
的用法示例。
在下文中一共展示了LinearAlgebra.eigenvectors方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: calcEigenPairs
# 需要導入模塊: import LinearAlgebra [as 別名]
# 或者: from LinearAlgebra import eigenvectors [as 別名]
def calcEigenPairs( self, RtR ):
"""
Calculate the corresponding eigenpairs for RtR, and sort them accordingly:
M{m1 >= m2 >= m3}; set M{v3 = v1 x v2} to ensure a RHS
(CORRECT)
@postcondition: The eigen pairs are calculated, sorted such that M{m1 >= m2 >= m3} and
M{v3 = v1 x v2}.
@param RtR: 3x3 Matrix of M{R^t * R}.
@type RtR: 3x3 Matrix
@return : Eigenpairs for the RtR matrix.
@rtype : List of stuff
"""
eVal, eVec = LinearAlgebra.eigenvectors(RtR)
# This is cool. We sort it using Numeric.sort(eVal)
# then we reverse it using nifty-crazy ass notation [::-1].
eVal2 = Numeric.sort(eVal)[::-1]
eVec2 = [[],[],[]] #Numeric.zeros((3,3), Numeric.Float64)
# Map the vectors to their appropriate owners
if ( eVal2[0] == eVal[0]):
eVec2[0] = eVec[0]
if ( eVal2[1] == eVal[1] ):
eVec2[1] = eVec[1]
eVec2[2] = eVec[2]
else:
eVec2[1] = eVec[2]
eVec2[2] = eVec[1]
elif( eVal2[0] == eVal[1]):
eVec2[0] = eVec[1]
if ( eVal2[1] == eVal[0] ):
eVec2[1] = eVec[0]
eVec2[2] = eVec[2]
else:
eVec2[1] = eVec[2]
eVec2[2] = eVec[0]
elif( eVal2[0] == eVal[2]):
eVec2[0] = eVec[2]
if ( eVal2[1] == eVal[1] ):
eVec2[1] = eVec[1]
eVec2[2] = eVec[0]
else:
eVec2[1] = eVec[0]
eVec2[2] = eVec[1]
eVec2[2][0] = eVec2[0][1]*eVec2[1][2] - eVec2[0][2]*eVec2[1][1]
eVec2[2][1] = eVec2[0][2]*eVec2[1][0] - eVec2[0][0]*eVec2[1][2]
eVec2[2][2] = eVec2[0][0]*eVec2[1][1] - eVec2[0][1]*eVec2[1][0]
return [eVal2, eVec2]
示例2: eig
# 需要導入模塊: import LinearAlgebra [as 別名]
# 或者: from LinearAlgebra import eigenvectors [as 別名]
def eig(object,**kw):
"""We try to adhere to the numpy way of doing things, so we need to do a transpose on the results
that we get back from Numeric"""
global _LinearAlgebra, _numpy_linalg
if _LinearAlgebra:
eigval,eigvec = _LinearAlgebra.eigenvectors(object,**kw)
eigvec = objects.numeric.transpose(eigvec)
return eigval,eigvec
elif _numpy_linalg:
return _numpy_linalg.eig(object,**kw)
else:
raise AttributeError("No linear algebra functionality to deal with an eigenvectors.")
示例3: findTransformationAsQuaternion
# 需要導入模塊: import LinearAlgebra [as 別名]
# 或者: from LinearAlgebra import eigenvectors [as 別名]
def findTransformationAsQuaternion(self, conf1, conf2 = None):
if conf2 is None:
conf1, conf2 = conf2, conf1
ref = conf1
conf = conf2
weights = self.universe().masses()
weights = weights/self.mass()
ref_cms = self.centerOfMass(ref).array
pos = Numeric.zeros((3,), Numeric.Float)
possq = 0.
cross = Numeric.zeros((3, 3), Numeric.Float)
for a in self.atomList():
r = a.position(conf).array
r_ref = a.position(ref).array-ref_cms
w = weights[a]
pos = pos + w*r
possq = possq + w*Numeric.add.reduce(r*r) \
+ w*Numeric.add.reduce(r_ref*r_ref)
cross = cross + w*r[:, Numeric.NewAxis]*r_ref[Numeric.NewAxis, :]
k = Numeric.zeros((4, 4), Numeric.Float)
k[0, 0] = -cross[0, 0]-cross[1, 1]-cross[2, 2]
k[0, 1] = cross[1, 2]-cross[2, 1]
k[0, 2] = cross[2, 0]-cross[0, 2]
k[0, 3] = cross[0, 1]-cross[1, 0]
k[1, 1] = -cross[0, 0]+cross[1, 1]+cross[2, 2]
k[1, 2] = -cross[0, 1]-cross[1, 0]
k[1, 3] = -cross[0, 2]-cross[2, 0]
k[2, 2] = cross[0, 0]-cross[1, 1]+cross[2, 2]
k[2, 3] = -cross[1, 2]-cross[2, 1]
k[3, 3] = cross[0, 0]+cross[1, 1]-cross[2, 2]
for i in range(1, 4):
for j in range(i):
k[i, j] = k[j, i]
k = 2.*k
for i in range(4):
k[i, i] = k[i, i] + possq - Numeric.add.reduce(pos*pos)
import LinearAlgebra
e, v = LinearAlgebra.eigenvectors(k)
i = Numeric.argmin(e)
v = v[i]
if v[0] < 0: v = -v
if e[i] <= 0.:
rms = 0.
else:
rms = Numeric.sqrt(e[i])
return Quaternion.Quaternion(v), Vector(ref_cms), \
Vector(pos), rms
示例4: compute
# 需要導入模塊: import LinearAlgebra [as 別名]
# 或者: from LinearAlgebra import eigenvectors [as 別名]
def compute(self):
N = len(self.points)
Ninv = 1. / N
# get the mean, and deviations from the mean
mu = Ninv * self.mu
devs = map(lambda pt,mu=mu: pt - mu, self.points)
# get a covariance matrix
C = Numeric.zeros((DIMENSIONS, DIMENSIONS))
for x in devs:
C = C + Numeric.matrixmultiply(x,
Numeric.transpose(x))
C = Ninv * C
# sort eigenvalue/vector pairs in order of decreasing eigenvalue
evals, V = LinearAlgebra.eigenvectors(C)
pairs = map(None, evals, V)
pairs.sort(lambda x, y: cmp(y, x))
self.eigenvalues = map(lambda p: p[0], pairs)
A = Numeric.array(map(lambda x: x[1], pairs))
self.A = Numeric.transpose(A)
示例5: diagonalization
# 需要導入模塊: import LinearAlgebra [as 別名]
# 或者: from LinearAlgebra import eigenvectors [as 別名]
def diagonalization(matrix):
print 'diagonalizing %sx%s matrix' %(len(matrix),len(matrix))
import LinearAlgebra
eigen_tuple = LinearAlgebra.eigenvectors(matrix)
## parse eigenvalues and eigenvectors
eigenvalues = list(eigen_tuple[0])
eigenvectors = list(eigen_tuple[1])
## organize eigenvalues and eigenvectors in list
eigen_list = zip(eigenvalues, eigenvectors)
## sort list
eigen_list.sort()
## reverse list
eigen_list.reverse()
## parse sorted eigenvalues and eigenvectors
eigenvalues = [eigen_list[eigen][0] for eigen in range(len(eigen_list))]
eigenvectors = [eigen_list[eigen][1] for eigen in range(len(eigen_list))]
return eigenvalues, eigenvectors
示例6: __init__
# 需要導入模塊: import LinearAlgebra [as 別名]
# 或者: from LinearAlgebra import eigenvectors [as 別名]
def __init__(self, trajectory, object, first=0, last=None, skip=1,
reference = None):
self.trajectory = trajectory
universe = trajectory.universe
if last is None: last = len(trajectory)
first_conf = trajectory.configuration[first]
offset = universe.contiguousObjectOffset([object], first_conf, 1)
if reference is None:
reference = first_conf
reference = universe.contiguousObjectConfiguration([object],
reference)
steps = (last-first+skip-1)/skip
mass = object.mass()
ref_cms = object.centerOfMass(reference)
atoms = object.atomList()
possq = Numeric.zeros((steps,), Numeric.Float)
cross = Numeric.zeros((steps, 3, 3), Numeric.Float)
rcms = Numeric.zeros((steps, 3), Numeric.Float)
# cms of the CONTIGUOUS object made of CONTINUOUS atom trajectories
for a in atoms:
r = trajectory.readParticleTrajectory(a, first, last, skip,
"box_coordinates").array
w = a._mass/mass
Numeric.add(rcms, w*r, rcms)
if offset is not None:
Numeric.add(rcms, w*offset[a].array, rcms)
# relative coords of the CONTIGUOUS reference
r_ref = Numeric.zeros((len(atoms), 3), Numeric.Float)
for a in range(len(atoms)):
r_ref[a] = atoms[a].position(reference).array - ref_cms.array
# main loop: storing data needed to fill M matrix
for a in range(len(atoms)):
r = trajectory.readParticleTrajectory(atoms[a],
first, last, skip,
"box_coordinates").array
r = r - rcms # (a-b)**2 != a**2 - b**2
if offset is not None:
Numeric.add(r, offset[atoms[a]].array,r)
trajectory._boxTransformation(r, r)
w = atoms[a]._mass/mass
Numeric.add(possq, w*Numeric.add.reduce(r*r, -1), possq)
Numeric.add(possq, w*Numeric.add.reduce(r_ref[a]*r_ref[a],-1),
possq)
Numeric.add(cross, w*r[:,:,Numeric.NewAxis]*r_ref[Numeric.NewAxis,
a,:],cross)
self.trajectory._boxTransformation(rcms, rcms)
# filling matrix M (formula no 40)
k = Numeric.zeros((steps, 4, 4), Numeric.Float)
k[:, 0, 0] = -cross[:, 0, 0]-cross[:, 1, 1]-cross[:, 2, 2]
k[:, 0, 1] = cross[:, 1, 2]-cross[:, 2, 1]
k[:, 0, 2] = cross[:, 2, 0]-cross[:, 0, 2]
k[:, 0, 3] = cross[:, 0, 1]-cross[:, 1, 0]
k[:, 1, 1] = -cross[:, 0, 0]+cross[:, 1, 1]+cross[:, 2, 2]
k[:, 1, 2] = -cross[:, 0, 1]-cross[:, 1, 0]
k[:, 1, 3] = -cross[:, 0, 2]-cross[:, 2, 0]
k[:, 2, 2] = cross[:, 0, 0]-cross[:, 1, 1]+cross[:, 2, 2]
k[:, 2, 3] = -cross[:, 1, 2]-cross[:, 2, 1]
k[:, 3, 3] = cross[:, 0, 0]+cross[:, 1, 1]-cross[:, 2, 2]
del cross
for i in range(1, 4):
for j in range(i):
k[:, i, j] = k[:, j, i]
Numeric.multiply(k, 2., k)
for i in range(4):
Numeric.add(k[:,i,i], possq, k[:,i,i])
del possq
quaternions = Numeric.zeros((steps, 4), Numeric.Float)
fit = Numeric.zeros((steps,), Numeric.Float)
import LinearAlgebra
for i in range(steps):
e, v = LinearAlgebra.eigenvectors(k[i])
j = Numeric.argmin(e)
if e[j] < 0.:
fit[i] = 0.
else:
fit[i] = Numeric.sqrt(e[j])
if v[j,0] < 0.: quaternions[i] = -v[j] # eliminate jumps
else: quaternions[i] = v[j]
self.fit = fit
self.cms = rcms
self.quaternions = quaternions
示例7: open
# 需要導入模塊: import LinearAlgebra [as 別名]
# 或者: from LinearAlgebra import eigenvectors [as 別名]
ca = Numeric.reshape(ca_pos, (num_ts, -1))
ca_avg = Numeric.average(ca)
ca2 = ca - ca_avg[Numeric.NewAxis, :]
ca_cov = Numeric.zeros((num_coor, num_coor), Numeric.Float)
for ts in ca2:
ca_cov += Numeric.outerproduct(ts, ts)
ca_cov /= num_ts
ca_cov1 = Numeric.matrixmultiply(ca_cov, mass_matrix)
del ca_cov
ca_cov2 = Numeric.matrixmultiply(mass_matrix, ca_cov1)
del ca_cov1
N_av = 6.0221367e23
hplanck_bar = 6.6260755e-34 / (2 * Numeric.pi)
k = 1.3806580000000001e-23
T = 300 # kelvin
eigenv, eigenvec = LinearAlgebra.eigenvectors(ca_cov2)
real = [e.real / 100. for e in eigenv]
f = open('eigenval.dat', 'w')
for i, val in enumerate(real):
f.write("%i\t%s\n" % (i + 1, val))
f.close()
eigenval = eigenv * 1.6605402e-27 * 1e-20
omega_i = Numeric.sqrt(k * T / (eigenval))
term = (hplanck_bar * omega_i) / (k * T)
summation_terms = (term / (Numeric.exp(term) - 1.)) - Numeric.log(1. - Numeric.exp(-term))
S_ho = k * N_av * Numeric.sum(summation_terms)
示例8: eig
# 需要導入模塊: import LinearAlgebra [as 別名]
# 或者: from LinearAlgebra import eigenvectors [as 別名]
def eig(v):
"""[x,v] = eig(m) returns the eigenvalues of m in x and the corresponding
eigenvectors in the rows of v.
"""
return LinearAlgebra.eigenvectors(v)
示例9: Vector
# 需要導入模塊: import LinearAlgebra [as 別名]
# 或者: from LinearAlgebra import eigenvectors [as 別名]
me.edges.extend(me.verts[i],me.verts[i+1])
me.faces.extend(me.verts[0],me.verts[1],me.verts[2]) # Add the faces, they reference the verts in polyline 1 and 2
scn = Blender.Scene.GetCurrent()
ob = scn.objects.new(me)
print ob.getLocation()
po = []
po.extend([1,2,3])
po.extend([2,3])
b = []
c = la.eigenvectors(a)
d = la.eigenvalues(a)
opa = Vector(c[1][0])
print c[0], 'Mas por que'
print c[1][0], 'Mas por que v1' , opa.magnitude
print c[1][1], 'Mas por que v2'
print c[1][2], 'Mas por que v3'
b = [Vector(c[1][0]),Vector(c[1][1]),Vector(c[1][2])]
print b,'Felipe b '