本文整理匯總了Python中LinearAlgebra類的典型用法代碼示例。如果您正苦於以下問題:Python LinearAlgebra類的具體用法?Python LinearAlgebra怎麽用?Python LinearAlgebra使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。
在下文中一共展示了LinearAlgebra類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: linePlaneIntersectionNumeric
def linePlaneIntersectionNumeric(p1, p2, p3, p4, p5):
if not useNumeric:
return linePlaneIntersection(p1, p2, p3, p4, p5)
if useNumpy:
top = [
[1., 1., 1., 1.],
[p1[0], p2[0], p3[0], p4[0]], [p1[1], p2[1], p3[1], p4[1]],
[p1[2], p2[2], p3[2], p4[2]]]
topDet = numpy.linalg.det(top)
bottom = [
[1., 1., 1., 0.], [p1[0], p2[0], p3[0], p5[0]-p4[0]],
[p1[1], p2[1], p3[1], p5[1]-p4[1]], [p1[2], p2[2], p3[2], p5[2]-p4[2]]]
botDet = numpy.linalg.det(bottom)
else: # actually use numeric
top = Matrix.Matrix(
[[1., 1., 1., 1.], [p1[0], p2[0], p3[0], p4[0]], [p1[1], p2[1],
p3[1], p4[1]], [p1[2], p2[2], p3[2], p4[2]]])
topDet = LinearAlgebra.determinant(top)
bottom = Matrix.Matrix(
[[1., 1., 1., 0.], [p1[0], p2[0], p3[0], p5[0]-p4[0]], [p1[1],
p2[1], p3[1], p5[1]-p4[1]], [p1[2], p2[2], p3[2], p5[2]-p4[2]]])
botDet = LinearAlgebra.determinant(bottom)
if topDet == 0.0 or botDet == 0.0:
return False
t = -topDet/botDet
x = p4[0] + (p5[0]-p4[0]) * t
y = p4[1] + (p5[1]-p4[1]) * t
z = p4[2] + (p5[2]-p4[2]) * t
return [x, y, z]
示例2: testgeneralizedInverse
def testgeneralizedInverse (self):
"Test LinearAlgebra.generalized_inverse"
import LinearAlgebra
ca = Numeric.array([[1,1-1j],[0,1]])
cai = LinearAlgebra.inverse(ca)
cai2 = LinearAlgebra.generalized_inverse(ca)
self.failUnless(eq(cai, cai2))
示例3: __init__
def __init__(self, atoms, constraints):
self.atoms = atoms
natoms = len(self.atoms)
nconst = reduce(operator.add, map(len, constraints))
b = Numeric.zeros((nconst, natoms), Numeric.Float)
c = Numeric.zeros((nconst,), Numeric.Float)
i = 0
for cons in constraints:
cons.setCoefficients(self.atoms, b, c, i)
i = i + len(cons)
u, s, vt = LinearAlgebra.singular_value_decomposition(b)
self.rank = 0
for i in range(min(natoms, nconst)):
if s[i] > 0.:
self.rank = self.rank + 1
self.b = b
self.bi = LinearAlgebra.generalized_inverse(b)
self.p = Numeric.identity(natoms)-Numeric.dot(self.bi, self.b)
self.c = c
self.bi_c = Numeric.dot(self.bi, c)
c_test = Numeric.dot(self.b, self.bi_c)
if Numeric.add.reduce((c_test-c)**2)/nconst > 1.e-12:
Utility.warning("The charge constraints are inconsistent."
" They will be applied as a least-squares"
" condition.")
示例4: render
def render(self, rstate):
# Set up the texture matrix as the modelview inverse
m = glGetFloatv(GL_MODELVIEW_MATRIX)
glMatrixMode(GL_TEXTURE)
m = LinearAlgebra.inverse(m)
m[3][0] = 0
m[3][1] = 0
m[3][2] = 0
glLoadMatrixf(m)
glMatrixMode(GL_MODELVIEW)
# Set up texture coordinate generation
glTexEnvfv(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE)
glTexGenfv(GL_S, GL_TEXTURE_GEN_MODE, GL_REFLECTION_MAP_EXT)
glTexGenfv(GL_T, GL_TEXTURE_GEN_MODE, GL_REFLECTION_MAP_EXT)
glTexGenfv(GL_R, GL_TEXTURE_GEN_MODE, GL_REFLECTION_MAP_EXT)
glEnable(GL_TEXTURE_GEN_S)
glEnable(GL_TEXTURE_GEN_T)
glEnable(GL_TEXTURE_GEN_R)
# We're blending on top of existing polygons, so use the same tricks as the decal pass
DecalRenderPass.render(self, rstate)
# Clean up
glMatrixMode(GL_TEXTURE)
glLoadIdentity()
glMatrixMode(GL_MODELVIEW)
glDisable(GL_TEXTURE_GEN_S)
glDisable(GL_TEXTURE_GEN_T)
glDisable(GL_TEXTURE_GEN_R)
示例5: __pow__
def __pow__(self, other):
shape = self.array.shape
if len(shape)!=2 or shape[0]!=shape[1]:
raise TypeError, "matrix is not square"
if type(other) in (type(1), type(1L)):
if other==0:
return Matrix(identity(shape[0]))
if other<0:
result=Matrix(LinearAlgebra.inverse(self.array))
x=Matrix(result)
other=-other
else:
result=self
x=result
if other <= 3:
while(other>1):
result=result*x
other=other-1
return result
# binary decomposition to reduce the number of Matrix
# Multiplies for other > 3.
beta = _binary(other)
t = len(beta)
Z,q = x.copy(),0
while beta[t-q-1] == '0':
Z *= Z
q += 1
result = Z.copy()
for k in range(q+1,t):
Z *= Z
if beta[t-k-1] == '1':
result *= Z
return result
else:
raise TypeError, "exponent must be an integer"
示例6: plotit
def plotit(xs,ys,title,legends):
#
# Do it
#
num_points=0
for x in xs:
num_points=num_points+len(x)
print num_points,'data points'
#x=[1,2,3,4,5,6,7,8,9]
#y=[2,4,6,8,10,12,14,16,18]
mat_fix=[]
vec_fix=[]
for x in xs:
for point in x:
mat_fix.append([point,1.0])
for y in ys:
for point in y:
vec_fix.append(point)
import LinearAlgebra
sols,rsq,rank,junk=LinearAlgebra.linear_least_squares(Numeric.array(mat_fix),
Numeric.array(vec_fix))
slope=sols[0]
intercept=sols[1]
print rsq
rsq=float(rsq[0])
print 'Slope: %.2f, Intercept: %.2f, R^2: %.2f' %(slope,intercept,rsq)
file=dislin_driver.graf_mult3(xs,ys,title,'Simple E','PBE_ene',legends)
return
示例7: testLinearLeastSquares2
def testLinearLeastSquares2(self):
"""
From bug #503733. Failing with dlapack_lite
"""
import LinearAlgebra
d = [0.49910197] + [0.998203938] * 49
d1 = [0.000898030454] * 50
def tridiagonal(sz):
G = Numeric.zeros((sz,sz), Numeric.Float64)
for i in range(sz):
G[i,i] = d[i]
for i in range(0,sz-1):
G[i+1,i] = G[i,i+1] = d1[i]
return G
yfull = Numeric.array(
[4.37016668e+18, 4.09591905e+18, 3.82167167e+18, 4.12952660e+18,
2.60084719e+18, 2.05944452e+18, 1.69850960e+18, 1.51450383e+18,
1.39419275e+18, 1.25264986e+18, 1.18187857e+18, 1.16772440e+18,
1.17126300e+18, 1.13941580e+18, 1.17834000e+18, 1.20664860e+18,
1.18895580e+18, 1.18895580e+18, 1.21726440e+18, 1.24557296e+18,
1.22434149e+18, 1.23495719e+18, 1.24203436e+18, 1.22434160e+18,
1.23495720e+18, 1.21372580e+18, 1.22434160e+18, 1.21018740e+18,
1.22080300e+18, 1.15357020e+18, 1.19957160e+18, 1.18187880e+18,
1.19249440e+18, 1.18895579e+18, 1.28449704e+18, 1.27742021e+18,
1.30218984e+18, 1.30926700e+18, 1.25972716e+18, 1.15003156e+18,
1.17126296e+18, 1.15710876e+18, 1.10756882e+18, 1.20311006e+18,
1.29511286e+18, 1.28449726e+18, 1.29157446e+18, 1.44373273e+18,])
for i in range(20, 40):
G = tridiagonal(i)
y = yfull[:i]
A = LinearAlgebra.linear_least_squares(G, y)[0]
total = Numeric.add.reduce(y)
residual = Numeric.absolute(y - Numeric.dot(G, A))
assert_eq(0.0, Numeric.add.reduce(residual)/total)
示例8: screwMotion
def screwMotion(self):
import LinearAlgebra
axis, angle = self.rotation().axisAndAngle()
d = self.vector*axis
x = d*axis-self.vector
r0 = Numeric.dot(LinearAlgebra.generalized_inverse(
self.tensor.array-Numeric.identity(3)), x.array)
return VectorModule.Vector(r0), axis, angle, d
示例9: inverse
def inverse(self):
"""
@returns: the inverse
@rtype: L{quaternion}
"""
import LinearAlgebra
inverse = LinearAlgebra.inverse(self.asMatrix())
return quaternion(inverse[:, 0])
示例10: testEigenvalues
def testEigenvalues(self):
"""
From bug #545259 -- illegal value to DGEEV routine
"""
import LinearAlgebra
a = Numeric.array([[2,3], [4,5]])
v = LinearAlgebra.eigenvalues(a)
assert_eq(v, Numeric.array([3.5-math.sqrt(57)/2.,
3.5+math.sqrt(57)/2.]))
示例11: testHeigenvalues
def testHeigenvalues(self):
"""
From bug #464980.
"""
import LinearAlgebra
a = Numeric.array([[1.0, 0.01j], [-0.01j, 1.0]])
v = LinearAlgebra.eigenvalues(a)
assert_eq(v, [1.01+0.j, 0.99+0.j])
Hv = LinearAlgebra.Heigenvalues(a)
assert_eq(v, [1.01+0.j, 0.99+0.j])
示例12: calcEigenPairs
def calcEigenPairs( self, RtR ):
"""
Calculate the corresponding eigenpairs for RtR, and sort them accordingly:
M{m1 >= m2 >= m3}; set M{v3 = v1 x v2} to ensure a RHS
(CORRECT)
@postcondition: The eigen pairs are calculated, sorted such that M{m1 >= m2 >= m3} and
M{v3 = v1 x v2}.
@param RtR: 3x3 Matrix of M{R^t * R}.
@type RtR: 3x3 Matrix
@return : Eigenpairs for the RtR matrix.
@rtype : List of stuff
"""
eVal, eVec = LinearAlgebra.eigenvectors(RtR)
# This is cool. We sort it using Numeric.sort(eVal)
# then we reverse it using nifty-crazy ass notation [::-1].
eVal2 = Numeric.sort(eVal)[::-1]
eVec2 = [[],[],[]] #Numeric.zeros((3,3), Numeric.Float64)
# Map the vectors to their appropriate owners
if ( eVal2[0] == eVal[0]):
eVec2[0] = eVec[0]
if ( eVal2[1] == eVal[1] ):
eVec2[1] = eVec[1]
eVec2[2] = eVec[2]
else:
eVec2[1] = eVec[2]
eVec2[2] = eVec[1]
elif( eVal2[0] == eVal[1]):
eVec2[0] = eVec[1]
if ( eVal2[1] == eVal[0] ):
eVec2[1] = eVec[0]
eVec2[2] = eVec[2]
else:
eVec2[1] = eVec[2]
eVec2[2] = eVec[0]
elif( eVal2[0] == eVal[2]):
eVec2[0] = eVec[2]
if ( eVal2[1] == eVal[1] ):
eVec2[1] = eVec[1]
eVec2[2] = eVec[0]
else:
eVec2[1] = eVec[0]
eVec2[2] = eVec[1]
eVec2[2][0] = eVec2[0][1]*eVec2[1][2] - eVec2[0][2]*eVec2[1][1]
eVec2[2][1] = eVec2[0][2]*eVec2[1][0] - eVec2[0][0]*eVec2[1][2]
eVec2[2][2] = eVec2[0][0]*eVec2[1][1] - eVec2[0][1]*eVec2[1][0]
return [eVal2, eVec2]
示例13: eig
def eig(object,**kw):
"""We try to adhere to the numpy way of doing things, so we need to do a transpose on the results
that we get back from Numeric"""
global _LinearAlgebra, _numpy_linalg
if _LinearAlgebra:
eigval,eigvec = _LinearAlgebra.eigenvectors(object,**kw)
eigvec = objects.numeric.transpose(eigvec)
return eigval,eigvec
elif _numpy_linalg:
return _numpy_linalg.eig(object,**kw)
else:
raise AttributeError("No linear algebra functionality to deal with an eigenvectors.")
示例14: testLinearLeastSquares
def testLinearLeastSquares(self):
"""
From bug #503733.
"""
# XXX not positive on this yet
import LinearAlgebra
from RandomArray import seed, random
seed(7,19)
(n, m) = (180, 35)
yp = random((n,m))
y = random(n)
x, residuals, rank, sv = LinearAlgebra.linear_least_squares(yp, y)
# shouldn't segfault.
assert rank == m
示例15: fit_polynomial
def fit_polynomial(x_vector, data_vector):
"""Fit a polynomial of degree `degree' at the points
in `x_vector' to the `data_vector' by interpolation.
"""
import Numeric as num
import LinearAlgebra as la
degree = len(x_vector)-1
vdm = vandermonde(x_vector, degree)
result = la.solve_linear_equations(vdm, num.array(data_vector))
result = list(result)
result.reverse()
return Polynomial(result)