本文整理匯總了Java中org.apache.commons.math3.stat.descriptive.SummaryStatistics.getSum方法的典型用法代碼示例。如果您正苦於以下問題:Java SummaryStatistics.getSum方法的具體用法?Java SummaryStatistics.getSum怎麽用?Java SummaryStatistics.getSum使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類org.apache.commons.math3.stat.descriptive.SummaryStatistics
的用法示例。
在下文中一共展示了SummaryStatistics.getSum方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。
示例1: getStats
import org.apache.commons.math3.stat.descriptive.SummaryStatistics; //導入方法依賴的package包/類
private static Stats getStats(FloatColumn values, SummaryStatistics summaryStatistics) {
Stats stats = new Stats("Column: " + values.name());
stats.min = (float) summaryStatistics.getMin();
stats.max = (float) summaryStatistics.getMax();
stats.n = summaryStatistics.getN();
stats.sum = summaryStatistics.getSum();
stats.variance = summaryStatistics.getVariance();
stats.populationVariance = summaryStatistics.getPopulationVariance();
stats.quadraticMean = summaryStatistics.getQuadraticMean();
stats.geometricMean = summaryStatistics.getGeometricMean();
stats.mean = summaryStatistics.getMean();
stats.standardDeviation = summaryStatistics.getStandardDeviation();
stats.sumOfLogs = summaryStatistics.getSumOfLogs();
stats.sumOfSquares = summaryStatistics.getSumsq();
stats.secondMoment = summaryStatistics.getSecondMoment();
return stats;
}
示例2: getSummaryStatisticsForCollection
import org.apache.commons.math3.stat.descriptive.SummaryStatistics; //導入方法依賴的package包/類
/**
* This function will take an aggregated collection of Summary Statistics
* and will generate a derived {@link SummaryStatistic} based on a flag for the
* desired summation. This is particularly helpful for finding out the
* means of the individual statistics of the collection.
* For example, if you wanted to find out the mean of means of the collection
* you would call this function like <p>
* getSummaryStatisticsForCollection(aggregate,1).getMean(); <p>
* Or if you wanted to determine the max number of annotations per
* individual, you could call: <p>
* getSummaryStatisticsForCollection(aggregate,5).getMax(); <p>
* The stat flag should be set to the particular individual statistic that should
* be summarized over.
*
* @param aggregate The aggregated collection of summary statistics
* @param stat Integer flag for the statistic (1:mean ; 2:sum; 3:min; 4:max; 5:N)
* @return {@link SummaryStatistics} of the selected statistic
*/
public SummaryStatistics getSummaryStatisticsForCollection(Collection<SummaryStatistics> aggregate, Stat stat) {
//LOG.info("Computing stats over collection of "+aggregate.size()+" elements ("+stat+"):");
//TODO: turn stat into enum
int x = 0;
//To save memory, I am using SummaryStatistics, which does not store the values,
//but this could be changed to DescriptiveStatistics to see values
//as well as other statistical functions like distributions
SummaryStatistics stats = new SummaryStatistics();
Double v = 0.0;
ArrayList<String> vals = new ArrayList();
for (SummaryStatistics s : aggregate) {
switch (stat) {
case MEAN : v= s.getMean(); stats.addValue(s.getMean()); break;
case SUM : v=s.getSum(); stats.addValue(s.getSum()); break;
case MIN : v=s.getMin(); stats.addValue(s.getMin()); break;
case MAX : v=s.getMax(); stats.addValue(s.getMax()); break;
case N : v= ((int)s.getN())*1.0; stats.addValue(s.getN()); break;
};
//vals.add(v.toString());
};
//LOG.info("vals: "+vals.toString());
return stats;
}
示例3: calculateOverallAnnotationSufficiencyForAttributeSet
import org.apache.commons.math3.stat.descriptive.SummaryStatistics; //導入方法依賴的package包/類
public double calculateOverallAnnotationSufficiencyForAttributeSet(Set<OWLClass> atts) throws UnknownOWLClassException {
SummaryStatistics stats = computeAttributeSetSimilarityStats(atts);
if ((this.getSummaryStatistics() == null) || Double.isNaN(this.getSummaryStatistics().mean.getMean())) {
LOG.info("Stats have not been computed yet - doing this now");
this.computeSystemStats();
}
// score = mean(atts)/mean(overall) + max(atts)/max(overall) + sum(atts)/mean(sum(overall))
double overall_score = 0.0;
Double mean_score = stats.getMean();
Double max_score = stats.getMax();
Double sum_score = stats.getSum();
if (!(mean_score.isNaN() || max_score.isNaN() || sum_score.isNaN())) {
mean_score = StatUtils.min(new double[]{(mean_score / this.overallSummaryStatsPerIndividual.mean.getMean()),1.0});
max_score = StatUtils.min(new double[]{(max_score / this.overallSummaryStatsPerIndividual.max.getMax()),1.0});
sum_score = StatUtils.min(new double[]{(sum_score / this.overallSummaryStatsPerIndividual.sum.getMean()),1.0});
overall_score = (mean_score + max_score + sum_score) / 3;
}
LOG.info("Overall mean: "+mean_score + " max: "+max_score + " sum:"+sum_score + " combined:"+overall_score);
return overall_score;
}
示例4: calculateSubgraphAnnotationSufficiencyForAttributeSet
import org.apache.commons.math3.stat.descriptive.SummaryStatistics; //導入方法依賴的package包/類
public double calculateSubgraphAnnotationSufficiencyForAttributeSet(Set<OWLClass> atts, OWLClass c) throws UnknownOWLClassException {
SummaryStatistics stats = computeAttributeSetSimilarityStatsForSubgraph(atts,c);
//TODO: compute statsPerIndividual for this subgraph
if ((this.overallSummaryStatsPerIndividual == null ) || (Double.isNaN(this.overallSummaryStatsPerIndividual.max.getMean()))) {
LOG.info("Stats have not been computed yet - doing this now");
this.computeSystemStats();
}
if (!(this.subgraphSummaryStatsPerIndividual.containsKey(c))) {
//only do this once for the whole system, per class requested
this.computeSystemStatsForSubgraph(c);
}
// score = mean(atts)/mean(overall) + max(atts)/max(overall) + sum(atts)/mean(sum(overall))
//TODO: need to normalize this based on the whole corpus
double score = 0.0;
Double mean_score = stats.getMean();
Double max_score = stats.getMax();
Double sum_score = stats.getSum();
if (!(mean_score.isNaN() || max_score.isNaN() || sum_score.isNaN())) {
mean_score = StatUtils.min(new double[]{(mean_score / this.subgraphSummaryStatsPerIndividual.get(c).mean.getMean()),1.0});
max_score = StatUtils.min(new double[]{(max_score / this.subgraphSummaryStatsPerIndividual.get(c).max.getMax()),1.0});
sum_score = StatUtils.min(new double[]{(sum_score / this.subgraphSummaryStatsPerIndividual.get(c).sum.getMean()),1.0});
score = (mean_score + max_score + sum_score) / 3;
}
LOG.info(getShortId(c)+" n: "+stats.getN()+" mean: "+mean_score + " max: "+max_score + " sum:"+sum_score + " combined:"+score);
return score;
}
示例5: add
import org.apache.commons.math3.stat.descriptive.SummaryStatistics; //導入方法依賴的package包/類
@Override
public void add(String cacheName, TransactionStats txStats)
{
boolean registerCacheStats = false;
WriteLock writeLock = getWriteLock(cacheName);
writeLock.lock();
try
{
// Are we adding new stats for a previously unseen cache?
registerCacheStats = !cacheToStatsMap.containsKey(cacheName);
if (registerCacheStats)
{
// There are no statistics yet for this cache.
cacheToStatsMap.put(cacheName, new HashMap<OpType, OperationStats>());
}
Map<OpType, OperationStats> cacheStats = cacheToStatsMap.get(cacheName);
for (OpType opType : OpType.values())
{
SummaryStatistics txOpSummary = txStats.getTimings(opType);
long count = txOpSummary.getN();
double totalTime = txOpSummary.getSum();
OperationStats oldStats = cacheStats.get(opType);
OperationStats newStats;
if (oldStats == null)
{
newStats = new OperationStats(totalTime, count);
}
else
{
newStats = new OperationStats(oldStats, totalTime, count);
}
cacheStats.put(opType, newStats);
}
}
finally
{
writeLock.unlock();
}
if (registerCacheStats)
{
// We've added stats for a previously unseen cache, raise an event
// so that an MBean for the cache may be registered, for example.
applicationContext.publishEvent(new CacheStatisticsCreated(this, cacheName));
}
}
示例6: anovaStats
import org.apache.commons.math3.stat.descriptive.SummaryStatistics; //導入方法依賴的package包/類
/**
* This method actually does the calculations (except P-value).
*
* @param categoryData <code>Collection</code> of <code>double[]</code>
* arrays each containing data for one category
* @param allowOneElementData if true, allow computation for one catagory
* only or for one data element per category
* @return computed AnovaStats
* @throws NullArgumentException if <code>categoryData</code> is <code>null</code>
* @throws DimensionMismatchException if <code>allowOneElementData</code> is false and the number of
* categories is less than 2 or a contained SummaryStatistics does not contain
* at least two values
*/
private AnovaStats anovaStats(final Collection<SummaryStatistics> categoryData,
final boolean allowOneElementData)
throws NullArgumentException, DimensionMismatchException {
MathUtils.checkNotNull(categoryData);
if (!allowOneElementData) {
// check if we have enough categories
if (categoryData.size() < 2) {
throw new DimensionMismatchException(LocalizedFormats.TWO_OR_MORE_CATEGORIES_REQUIRED,
categoryData.size(), 2);
}
// check if each category has enough data
for (final SummaryStatistics array : categoryData) {
if (array.getN() <= 1) {
throw new DimensionMismatchException(LocalizedFormats.TWO_OR_MORE_VALUES_IN_CATEGORY_REQUIRED,
(int) array.getN(), 2);
}
}
}
int dfwg = 0;
double sswg = 0;
double totsum = 0;
double totsumsq = 0;
int totnum = 0;
for (final SummaryStatistics data : categoryData) {
final double sum = data.getSum();
final double sumsq = data.getSumsq();
final int num = (int) data.getN();
totnum += num;
totsum += sum;
totsumsq += sumsq;
dfwg += num - 1;
final double ss = sumsq - ((sum * sum) / num);
sswg += ss;
}
final double sst = totsumsq - ((totsum * totsum) / totnum);
final double ssbg = sst - sswg;
final int dfbg = categoryData.size() - 1;
final double msbg = ssbg / dfbg;
final double mswg = sswg / dfwg;
final double F = msbg / mswg;
return new AnovaStats(dfbg, dfwg, F);
}