本文整理匯總了Java中org.apache.commons.math3.stat.descriptive.SummaryStatistics.getStandardDeviation方法的典型用法代碼示例。如果您正苦於以下問題:Java SummaryStatistics.getStandardDeviation方法的具體用法?Java SummaryStatistics.getStandardDeviation怎麽用?Java SummaryStatistics.getStandardDeviation使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類org.apache.commons.math3.stat.descriptive.SummaryStatistics
的用法示例。
在下文中一共展示了SummaryStatistics.getStandardDeviation方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。
示例1: getStats
import org.apache.commons.math3.stat.descriptive.SummaryStatistics; //導入方法依賴的package包/類
private static Stats getStats(FloatColumn values, SummaryStatistics summaryStatistics) {
Stats stats = new Stats("Column: " + values.name());
stats.min = (float) summaryStatistics.getMin();
stats.max = (float) summaryStatistics.getMax();
stats.n = summaryStatistics.getN();
stats.sum = summaryStatistics.getSum();
stats.variance = summaryStatistics.getVariance();
stats.populationVariance = summaryStatistics.getPopulationVariance();
stats.quadraticMean = summaryStatistics.getQuadraticMean();
stats.geometricMean = summaryStatistics.getGeometricMean();
stats.mean = summaryStatistics.getMean();
stats.standardDeviation = summaryStatistics.getStandardDeviation();
stats.sumOfLogs = summaryStatistics.getSumOfLogs();
stats.sumOfSquares = summaryStatistics.getSumsq();
stats.secondMoment = summaryStatistics.getSecondMoment();
return stats;
}
示例2: computeStats
import org.apache.commons.math3.stat.descriptive.SummaryStatistics; //導入方法依賴的package包/類
private void computeStats() {
SummaryStatistics centroidStats = new SummaryStatistics();
SummaryStatistics edgeStats = new SummaryStatistics();
for (IFeature poi : pois) {
centroidStats.addValue(getDistToCentroid().get(poi));
edgeStats.addValue(getDistToEdge().get(poi));
}
meanDistanceCentroid = centroidStats.getMean();
stdDistanceCentroid = centroidStats.getStandardDeviation();
minDistanceCentroid = centroidStats.getMin();
maxDistanceCentroid = centroidStats.getMax();
meanDistanceEdge = edgeStats.getMean();
stdDistanceEdge = edgeStats.getStandardDeviation();
minDistanceEdge = edgeStats.getMin();
maxDistanceEdge = edgeStats.getMax();
}
示例3: allocateTokens
import org.apache.commons.math3.stat.descriptive.SummaryStatistics; //導入方法依賴的package包/類
public static Collection<Token> allocateTokens(final TokenMetadata tokenMetadata,
final AbstractReplicationStrategy rs,
final InetAddress endpoint,
int numTokens)
{
StrategyAdapter strategy = getStrategy(tokenMetadata, rs, endpoint);
Collection<Token> tokens = create(tokenMetadata, strategy).addUnit(endpoint, numTokens);
tokens = adjustForCrossDatacenterClashes(tokenMetadata, strategy, tokens);
if (logger.isWarnEnabled())
{
logger.warn("Selected tokens {}", tokens);
SummaryStatistics os = replicatedOwnershipStats(tokenMetadata, rs, endpoint);
TokenMetadata tokenMetadataCopy = tokenMetadata.cloneOnlyTokenMap();
tokenMetadataCopy.updateNormalTokens(tokens, endpoint);
SummaryStatistics ns = replicatedOwnershipStats(tokenMetadataCopy, rs, endpoint);
logger.warn("Replicated node load in datacentre before allocation " + statToString(os));
logger.warn("Replicated node load in datacentre after allocation " + statToString(ns));
// TODO: Is it worth doing the replicated ownership calculation always to be able to raise this alarm?
if (ns.getStandardDeviation() > os.getStandardDeviation())
logger.warn("Unexpected growth in standard deviation after allocation.");
}
return tokens;
}
示例4: initialiseGaussianDistributionForNumericAttribute
import org.apache.commons.math3.stat.descriptive.SummaryStatistics; //導入方法依賴的package包/類
private Map<Attribute, Map<Double, NormalDistribution>> initialiseGaussianDistributionForNumericAttribute(Instance instanceInfo, ArrayList<Instance> instancesList){
Map<Attribute, Map<Double, NormalDistribution>> numericAttributeClassGaussDistributions = new HashMap<>();
// go through each numeric attibute
for (Attribute attribute : Collections.list(instanceInfo.enumerateAttributes())) {
// check whether the attribute is numeric
if(attribute.isNumeric()){
// for each class label
HashMap<Double, NormalDistribution> classLabelDistribution = new HashMap<>();
for (int classLabelNo = 0; classLabelNo < instanceInfo.numClasses(); classLabelNo++) {
// go through all instance in the dataset to create normal distribution
SummaryStatistics summaryStatistics = new SummaryStatistics();
for (Instance instance : instancesList) {
summaryStatistics.addValue(instance.value(attribute));
}
// create normal distribution for this attribute with corresponding
// class label
NormalDistribution normalDistribution = new NormalDistribution(
summaryStatistics.getMean(),
summaryStatistics.getStandardDeviation());
// map to hold classLabel and distribution
classLabelDistribution.put((double) classLabelNo, normalDistribution);
}
// put it into the map
numericAttributeClassGaussDistributions.put(attribute, classLabelDistribution);
}
}
return numericAttributeClassGaussDistributions;
}
示例5: getSummaryStats
import org.apache.commons.math3.stat.descriptive.SummaryStatistics; //導入方法依賴的package包/類
public void getSummaryStats(double[] values){
SummaryStatistics stats = new SummaryStatistics();
for( int i = 0; i < values.length; i++) {
stats.addValue(values[i]);
}
double mean = stats.getMean();
double std = stats.getStandardDeviation();
System.out.println(mean + "\t" + std);
}
示例6: spectrogramMeanSd
import org.apache.commons.math3.stat.descriptive.SummaryStatistics; //導入方法依賴的package包/類
/**
* @param spectrogram
* @return double[]{mean, sd}
*/
public static double[] spectrogramMeanSd(List<float[]> spectrogram)
{
SummaryStatistics stat=new SummaryStatistics();
for(float[] spec: spectrogram) for(float v: spec) stat.addValue(v);
return new double[]{stat.getMean(), stat.getStandardDeviation()};
}
示例7: SubGraph
import org.apache.commons.math3.stat.descriptive.SummaryStatistics; //導入方法依賴的package包/類
public SubGraph(int subGraphId, Collection<Integer> itemIndices, SummaryStatistics summaryStatisticsQ, SummaryStatistics summaryStatisticsArea) {
minInit(subGraphId, itemIndices, (float) summaryStatisticsQ.getMean());
standardDeviationQ = (float) summaryStatisticsQ.getStandardDeviation();
meanArea = (float) summaryStatisticsArea.getMean();
standardDeviationArea = (float) summaryStatisticsArea.getStandardDeviation();
debug();
}
示例8: computeStats
import org.apache.commons.math3.stat.descriptive.SummaryStatistics; //導入方法依賴的package包/類
private void computeStats() {
SummaryStatistics centroidStats = new SummaryStatistics();
SummaryStatistics edgeStats = new SummaryStatistics();
for (IFeature atm : atms) {
centroidStats.addValue(getDistToCentroid().get(atm));
edgeStats.addValue(getDistToEdge().get(atm));
}
meanDistanceCentroid = centroidStats.getMean();
stdDistanceCentroid = centroidStats.getStandardDeviation();
meanDistanceEdge = edgeStats.getMean();
stdDistanceEdge = edgeStats.getStandardDeviation();
}
示例9: applyGlobalFilter
import org.apache.commons.math3.stat.descriptive.SummaryStatistics; //導入方法依賴的package包/類
/**
* Applies a global filter on pitches in S1 and moves all pitches whose salience is bellow a certain
* threshold from S1 to S0. This filter is described in [1], section II-C.
*/
private void applyGlobalFilter() {
SummaryStatistics statistics = new SummaryStatistics();
/* Iteration #1: Gather data to obtain salience statistics. */
for (int t=0; t<this.s1.length; t++) {
for (int i=0; i<this.s1[t].length; i++) {
if (this.s1[t][i] == null) {
continue;
}
statistics.addValue(this.s1[t][i].getSalience());
}
}
/* Iteration #2: Move pitches that are bellow the threshold. */
final double threshold = statistics.getMean() - this.t2 * statistics.getStandardDeviation();
for (int t=0; t<this.s1.length; t++) {
for (int i=0; i<this.s1[t].length; i++) {
if (this.s1[t][i] == null) {
continue;
}
if (this.s1[t][i].getSalience() < threshold) {
this.moveToS0(t,i);
}
}
}
}
示例10: setWeek
import org.apache.commons.math3.stat.descriptive.SummaryStatistics; //導入方法依賴的package包/類
/**
* Sets min, max, mean, and deviation for a week
*
* @param week Statistics for the week
*/
public void setWeek(SummaryStatistics week)
{
this.weekMin = week.getMin();
this.weekMax = week.getMax();
this.weekAvg = week.getMean();
this.weekDeviation = week.getStandardDeviation();
}
示例11: setMonth
import org.apache.commons.math3.stat.descriptive.SummaryStatistics; //導入方法依賴的package包/類
/**
* Sets min, max, mean, and deviation for a month.
*
* @param month Statistics for the month.
*/
public void setMonth(SummaryStatistics month)
{
this.monthMin = month.getMin();
this.monthMax = month.getMax();
this.monthAvg = month.getMean();
this.monthDeviation = month.getStandardDeviation();
}
示例12: setYear
import org.apache.commons.math3.stat.descriptive.SummaryStatistics; //導入方法依賴的package包/類
/**
* Sets min, max, mean, and deviation for a year.
*
* @param year Statistics for the year.
*/
public void setYear(SummaryStatistics year)
{
this.yearMin = year.getMin();
this.yearMax = year.getMax();
this.yearAvg = year.getMean();
this.yearDeviation = year.getStandardDeviation();
}
示例13: setAll
import org.apache.commons.math3.stat.descriptive.SummaryStatistics; //導入方法依賴的package包/類
/**
* Sets min, max, mean, and deviation for a all.
*
* @param all Statistics for the all.
*/
public void setAll(SummaryStatistics all)
{
this.allMin = all.getMin();
this.allMax = all.getMax();
this.allAvg = all.getMean();
this.allDeviation = all.getStandardDeviation();
}
示例14: getKernel
import org.apache.commons.math3.stat.descriptive.SummaryStatistics; //導入方法依賴的package包/類
/**
* The within-bin smoothing kernel. Returns a Gaussian distribution
* parameterized by {@code bStats}, unless the bin contains only one
* observation, in which case a constant distribution is returned.
*
* @param bStats summary statistics for the bin
* @return within-bin kernel parameterized by bStats
*/
protected RealDistribution getKernel(SummaryStatistics bStats) {
if (bStats.getN() == 1 || bStats.getVariance() == 0) {
return new ConstantRealDistribution(bStats.getMean());
} else {
return new NormalDistribution(randomData.getRandomGenerator(),
bStats.getMean(), bStats.getStandardDeviation(),
NormalDistribution.DEFAULT_INVERSE_ABSOLUTE_ACCURACY);
}
}
示例15: getKernel
import org.apache.commons.math3.stat.descriptive.SummaryStatistics; //導入方法依賴的package包/類
/**
* The within-bin smoothing kernel. Returns a Gaussian distribution
* parameterized by {@code bStats}, unless the bin contains only one
* observation, in which case a constant distribution is returned.
*
* @param bStats summary statistics for the bin
* @return within-bin kernel parameterized by bStats
*/
protected RealDistribution getKernel(SummaryStatistics bStats) {
if (bStats.getN() == 1) {
return new ConstantRealDistribution(bStats.getMean());
} else {
return new NormalDistribution(randomData.getRandomGenerator(),
bStats.getMean(), bStats.getStandardDeviation(),
NormalDistribution.DEFAULT_INVERSE_ABSOLUTE_ACCURACY);
}
}