本文整理匯總了Java中org.apache.commons.math3.stat.descriptive.SummaryStatistics.addValue方法的典型用法代碼示例。如果您正苦於以下問題:Java SummaryStatistics.addValue方法的具體用法?Java SummaryStatistics.addValue怎麽用?Java SummaryStatistics.addValue使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類org.apache.commons.math3.stat.descriptive.SummaryStatistics
的用法示例。
在下文中一共展示了SummaryStatistics.addValue方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。
示例1: getAggregateStats
import org.apache.commons.math3.stat.descriptive.SummaryStatistics; //導入方法依賴的package包/類
public void getAggregateStats(double[] values1, double[] values2){
AggregateSummaryStatistics aggregate = new AggregateSummaryStatistics();
SummaryStatistics firstSet = aggregate.createContributingStatistics();
SummaryStatistics secondSet = aggregate.createContributingStatistics();
for(int i = 0; i < values1.length; i++) {
firstSet.addValue(values1[i]);
}
for(int i = 0; i < values2.length; i++) {
secondSet.addValue(values2[i]);
}
double sampleSum = aggregate.getSum();
double sampleMean = aggregate.getMean();
double sampleStd= aggregate.getStandardDeviation();
System.out.println(sampleSum + "\t" + sampleMean + "\t" + sampleStd);
}
示例2: getEdges
import org.apache.commons.math3.stat.descriptive.SummaryStatistics; //導入方法依賴的package包/類
private static FloatVector getEdges(MultiImage img) {
SummaryStatistics[] stats = new SummaryStatistics[256];
for (int i = 0; i < 256; ++i) {
stats[i] = new SummaryStatistics();
}
List<Boolean> edgePixels = EdgeImg.getEdgePixels(img,
new ArrayList<Boolean>(img.getWidth() * img.getHeight()));
ArrayList<LinkedList<Boolean>> partition = GridPartitioner.partition(edgePixels, img.getWidth(),
img.getHeight(), 16, 16);
for (int i = 0; i < partition.size(); ++i) {
LinkedList<Boolean> edge = partition.get(i);
SummaryStatistics stat = stats[i];
for (boolean b : edge) {
stat.addValue(b ? 1 : 0);
}
}
float[] f = new float[256];
for (int i = 0; i < 256; ++i) {
f[i] = (float) stats[i].getMean();
}
return new FloatVectorImpl(f);
}
示例3: getEdges
import org.apache.commons.math3.stat.descriptive.SummaryStatistics; //導入方法依賴的package包/類
private static FloatVector getEdges(MultiImage img) {
SummaryStatistics[] stats = new SummaryStatistics[64];
for (int i = 0; i < 64; ++i) {
stats[i] = new SummaryStatistics();
}
List<Boolean> edgePixels = EdgeImg.getEdgePixels(img,
new ArrayList<Boolean>(img.getWidth() * img.getHeight()));
ArrayList<LinkedList<Boolean>> partition = ARPartioner.partition(edgePixels, img.getWidth(),
img.getHeight(), 8, 8);
for (int i = 0; i < partition.size(); ++i) {
LinkedList<Boolean> edge = partition.get(i);
SummaryStatistics stat = stats[i];
for (boolean b : edge) {
stat.addValue(b ? 1 : 0);
}
}
float[] f = new float[64];
for (int i = 0; i < 64; ++i) {
f[i] = (float) stats[i].getMean();
}
return new FloatVectorImpl(f);
}
示例4: getFeatures
import org.apache.commons.math3.stat.descriptive.SummaryStatistics; //導入方法依賴的package包/類
/**
* Returns a list of feature vectors given a SegmentContainer.
*
* @param segment SegmentContainer for which to calculate the feature vectors.
* @return List of HPCP Shingle feature vectors.
*/
private List<float[]> getFeatures(SegmentContainer segment) {
/* Create STFT; If this fails, return empty list. */
Pair<Integer,Integer> parameters = FFTUtil.parametersForDuration(segment.getSamplingrate(), WINDOW_SIZE);
STFT stft = segment.getSTFT(parameters.first,(parameters.first - 2*parameters.second)/2, parameters.second, new HanningWindow());
if (stft == null) {
return new ArrayList<>();
}
HPCP hpcps = new HPCP(this.resolution, this.min_frequency, this.max_frequency);
hpcps.addContribution(stft);
int vectors = Math.max(hpcps.size() - SHINGLE_SIZE, 1);
final SummaryStatistics statistics = new SummaryStatistics();
List<Pair<Double, float[]>> features = new ArrayList<>(vectors);
for (int n = 0; n < vectors; n++) {
Pair<Double, float[]> feature = this.getHPCPShingle(hpcps, n);
features.add(feature);
statistics.addValue(feature.first);
}
final double threshold = 0.25*statistics.getGeometricMean();
return features.stream().filter(f -> (f.first > threshold)).map(f -> f.second).collect(Collectors.toList());
}
示例5: calcClusterMeanInfo
import org.apache.commons.math3.stat.descriptive.SummaryStatistics; //導入方法依賴的package包/類
private double calcClusterMeanInfo(Set<Integer> members) throws AdeInternalException {
if (members.size() == 1){
return 0;
}
final SummaryStatistics sumS = new SummaryStatistics();
for (int i : members){
for (int j : members) {
if (i <= j){
continue;
}
double v;
v = m_informationMat.get(i, j);
if (!Double.isNaN(v)){
sumS.addValue(v);
}
}
}
final double res = sumS.getMean();
if (Double.isNaN(res)){
return 0;
}
return res;
}
示例6: anovaStats
import org.apache.commons.math3.stat.descriptive.SummaryStatistics; //導入方法依賴的package包/類
/**
* This method calls the method that actually does the calculations (except
* P-value).
*
* @param categoryData
* <code>Collection</code> of <code>double[]</code> arrays each
* containing data for one category
* @return computed AnovaStats
* @throws NullArgumentException
* if <code>categoryData</code> is <code>null</code>
* @throws DimensionMismatchException
* if the length of the <code>categoryData</code> array is less
* than 2 or a contained <code>double[]</code> array does not
* contain at least two values
*/
private AnovaStats anovaStats(final Collection<double[]> categoryData)
throws NullArgumentException, DimensionMismatchException {
MathUtils.checkNotNull(categoryData);
final Collection<SummaryStatistics> categoryDataSummaryStatistics =
new ArrayList<SummaryStatistics>(categoryData.size());
// convert arrays to SummaryStatistics
for (final double[] data : categoryData) {
final SummaryStatistics dataSummaryStatistics = new SummaryStatistics();
categoryDataSummaryStatistics.add(dataSummaryStatistics);
for (final double val : data) {
dataSummaryStatistics.addValue(val);
}
}
return anovaStats(categoryDataSummaryStatistics, false);
}
示例7: getSummaryStatisticsForCollection
import org.apache.commons.math3.stat.descriptive.SummaryStatistics; //導入方法依賴的package包/類
/**
* This function will take an aggregated collection of Summary Statistics
* and will generate a derived {@link SummaryStatistic} based on a flag for the
* desired summation. This is particularly helpful for finding out the
* means of the individual statistics of the collection.
* For example, if you wanted to find out the mean of means of the collection
* you would call this function like <p>
* getSummaryStatisticsForCollection(aggregate,1).getMean(); <p>
* Or if you wanted to determine the max number of annotations per
* individual, you could call: <p>
* getSummaryStatisticsForCollection(aggregate,5).getMax(); <p>
* The stat flag should be set to the particular individual statistic that should
* be summarized over.
*
* @param aggregate The aggregated collection of summary statistics
* @param stat Integer flag for the statistic (1:mean ; 2:sum; 3:min; 4:max; 5:N)
* @return {@link SummaryStatistics} of the selected statistic
*/
public SummaryStatistics getSummaryStatisticsForCollection(Collection<SummaryStatistics> aggregate, Stat stat) {
//LOG.info("Computing stats over collection of "+aggregate.size()+" elements ("+stat+"):");
//TODO: turn stat into enum
int x = 0;
//To save memory, I am using SummaryStatistics, which does not store the values,
//but this could be changed to DescriptiveStatistics to see values
//as well as other statistical functions like distributions
SummaryStatistics stats = new SummaryStatistics();
Double v = 0.0;
ArrayList<String> vals = new ArrayList();
for (SummaryStatistics s : aggregate) {
switch (stat) {
case MEAN : v= s.getMean(); stats.addValue(s.getMean()); break;
case SUM : v=s.getSum(); stats.addValue(s.getSum()); break;
case MIN : v=s.getMin(); stats.addValue(s.getMin()); break;
case MAX : v=s.getMax(); stats.addValue(s.getMax()); break;
case N : v= ((int)s.getN())*1.0; stats.addValue(s.getN()); break;
};
//vals.add(v.toString());
};
//LOG.info("vals: "+vals.toString());
return stats;
}
示例8: testTwoSampleTHomoscedastic
import org.apache.commons.math3.stat.descriptive.SummaryStatistics; //導入方法依賴的package包/類
@Test
public void testTwoSampleTHomoscedastic() {
double[] sample1 ={2, 4, 6, 8, 10, 97};
double[] sample2 = {4, 6, 8, 10, 16};
SummaryStatistics sampleStats1 = new SummaryStatistics();
for (int i = 0; i < sample1.length; i++) {
sampleStats1.addValue(sample1[i]);
}
SummaryStatistics sampleStats2 = new SummaryStatistics();
for (int i = 0; i < sample2.length; i++) {
sampleStats2.addValue(sample2[i]);
}
// Target comparison values computed using R version 1.8.1 (Linux version)
Assert.assertEquals("two sample homoscedastic t stat", 0.73096310086,
testStatistic.homoscedasticT(sample1, sample2), 10E-11);
Assert.assertEquals("two sample homoscedastic p value", 0.4833963785,
testStatistic.homoscedasticTTest(sampleStats1, sampleStats2), 1E-10);
Assert.assertTrue("two sample homoscedastic t-test reject",
testStatistic.homoscedasticTTest(sample1, sample2, 0.49));
Assert.assertTrue("two sample homoscedastic t-test accept",
!testStatistic.homoscedasticTTest(sample1, sample2, 0.48));
}
示例9: initialiseGaussianDistributionForNumericAttribute
import org.apache.commons.math3.stat.descriptive.SummaryStatistics; //導入方法依賴的package包/類
private Map<Attribute, Map<Double, NormalDistribution>> initialiseGaussianDistributionForNumericAttribute(Instance instanceInfo, ArrayList<Instance> instancesList){
Map<Attribute, Map<Double, NormalDistribution>> numericAttributeClassGaussDistributions = new HashMap<>();
// go through each numeric attibute
for (Attribute attribute : Collections.list(instanceInfo.enumerateAttributes())) {
// check whether the attribute is numeric
if(attribute.isNumeric()){
// for each class label
HashMap<Double, NormalDistribution> classLabelDistribution = new HashMap<>();
for (int classLabelNo = 0; classLabelNo < instanceInfo.numClasses(); classLabelNo++) {
// go through all instance in the dataset to create normal distribution
SummaryStatistics summaryStatistics = new SummaryStatistics();
for (Instance instance : instancesList) {
summaryStatistics.addValue(instance.value(attribute));
}
// create normal distribution for this attribute with corresponding
// class label
NormalDistribution normalDistribution = new NormalDistribution(
summaryStatistics.getMean(),
summaryStatistics.getStandardDeviation());
// map to hold classLabel and distribution
classLabelDistribution.put((double) classLabelNo, normalDistribution);
}
// put it into the map
numericAttributeClassGaussDistributions.put(attribute, classLabelDistribution);
}
}
return numericAttributeClassGaussDistributions;
}
示例10: getSummaryStats
import org.apache.commons.math3.stat.descriptive.SummaryStatistics; //導入方法依賴的package包/類
public void getSummaryStats(double[] values){
SummaryStatistics stats = new SummaryStatistics();
for( int i = 0; i < values.length; i++) {
stats.addValue(values[i]);
}
double mean = stats.getMean();
double std = stats.getStandardDeviation();
System.out.println(mean + "\t" + std);
}
示例11: pureSineTest
import org.apache.commons.math3.stat.descriptive.SummaryStatistics; //導入方法依賴的package包/類
@Test
public void pureSineTest() {
long seed = 1234567L; // System.nanoTime() // change this to do random stress test
double[] data = testDataGenerator.createNoisySeasonalData(144, 12, 1.0, 0.0, 0.0, seed); // sin(2 \pi i / 12)
final Builder builder = new Builder().setPeriodLength(12).setSeasonalWidth(7).setRobustFlag(false);
SeasonalTrendLoess smoother = builder.buildSmoother(data);
Decomposition stl = smoother.decompose();
StlFitStats stats = new StlFitStats(stl);
SummaryStatistics dataStats = new SummaryStatistics();
for (double v : stl.getData())
dataStats.addValue(v);
assertEquals("raw data mean", 0.0, stats.getDataMean(), 1.0e-11);
assertEquals("raw data variance", dataStats.getVariance(), stats.getDataVariance(), 1.0e-11);
assertEquals("raw data std dev", dataStats.getStandardDeviation(), stats.getDataStdDev(), 1.0e-11);
assertEquals("trend mean", 0.0, stats.getTrendMean(), 1.0e-11);
assertEquals("trend range", 0.0, stats.getTrendRange(), 1.0e-11);
assertEquals("seasonal mean", 0.0, stats.getSeasonalMean(), 1.0e-11);
assertEquals("seasonal variance", dataStats.getVariance(), stats.getSeasonalVariance(), 1.0e-11);
assertEquals("seasonal std dev", dataStats.getStandardDeviation(), stats.getSeasonalStdDev(), 1.0e-11);
assertEquals("residual mean", 0.0, stats.getResidualMean(), 1.0e-11);
assertEquals("residual variance", 0.0, stats.getResidualVariance(), 1.0e-11);
assertEquals("residual std dev", 0.0, stats.getResidualStdDev(), 1.0e-11);
assertEquals("deseasonal mean", 0.0, stats.getDeSeasonalMean(), 1.0e-11);
assertEquals("deseasonal variance", 0.0, stats.getDeSeasonalVariance(), 1.0e-11);
assertEquals("trend test z-score", 0.0, stats.getTrendinessZScore(), 1.0e-11);
assertEquals("seasonal test z-score", stats.getSeasonalVariance(), 1.0e-6 * stats.getSeasonalZScore(), 1.0e-11);
}
示例12: pureTrendTest
import org.apache.commons.math3.stat.descriptive.SummaryStatistics; //導入方法依賴的package包/類
@Test
public void pureTrendTest() {
long seed = 1234567L; // System.nanoTime() // change this to do random stress test
// linear trend (2 \pi i / 12)
double[] data = testDataGenerator.createNoisySeasonalData(144, 12, 0.0, 1.0, 0.0, seed);
final Builder builder = new Builder().setPeriodLength(12).setSeasonalWidth(7).setNonRobust();
SeasonalTrendLoess smoother = builder.buildSmoother(data);
Decomposition stl = smoother.decompose();
StlFitStats stats = new StlFitStats(stl);
SummaryStatistics dataStats = new SummaryStatistics();
for (double v : stl.getData())
dataStats.addValue(v);
assertEquals("raw data mean", dataStats.getMean(), stats.getDataMean(), 1.0e-11);
assertEquals("raw data variance", dataStats.getVariance(), stats.getDataVariance(), 1.0e-11);
assertEquals("raw data std dev", dataStats.getStandardDeviation(), stats.getDataStdDev(), 1.0e-11);
assertEquals("trend mean", dataStats.getMean(), stats.getTrendMean(), 1.0e-11);
assertEquals("trend range", 2.0 * dataStats.getMean(), stats.getTrendRange(), 1.0e-11);
assertEquals("seasonal mean", 0.0, stats.getSeasonalMean(), 1.0e-11);
assertEquals("seasonal variance", 0.0, stats.getSeasonalVariance(), 1.0e-11);
assertEquals("seasonal std dev", 0.0, stats.getSeasonalStdDev(), 1.0e-11);
assertEquals("residual mean", 0.0, stats.getResidualMean(), 1.0e-11);
assertEquals("residual variance", 0.0, stats.getResidualVariance(), 1.0e-11);
assertEquals("residual std dev", 0.0, stats.getResidualStdDev(), 1.0e-11);
assertEquals("deseasonal mean", dataStats.getMean(), stats.getDeSeasonalMean(), 1.0e-11);
assertEquals("deseasonal variance", dataStats.getVariance(), stats.getDeSeasonalVariance(), 1.0e-11);
assertEquals("trend test z-score", dataStats.getVariance(), 1.0e-6 * stats.getTrendinessZScore(), 1.0e-11);
assertEquals("seasonal test z-score", 0.0, 1.0e-6 * stats.getSeasonalZScore(), 1.0e-11);
}
示例13: spectrogramMeanSd
import org.apache.commons.math3.stat.descriptive.SummaryStatistics; //導入方法依賴的package包/類
/**
* @param spectrogram
* @return double[]{mean, sd}
*/
public static double[] spectrogramMeanSd(List<float[]> spectrogram)
{
SummaryStatistics stat=new SummaryStatistics();
for(float[] spec: spectrogram) for(float v: spec) stat.addValue(v);
return new double[]{stat.getMean(), stat.getStandardDeviation()};
}
示例14: printImpostorThresholds
import org.apache.commons.math3.stat.descriptive.SummaryStatistics; //導入方法依賴的package包/類
private void printImpostorThresholds(Set<float[]> impostorScoresArray) {
// Calculate Distributions - only with raw scores, not imp_prob scores
if (!isImpProb) {
SummaryStatistics muStats = new SummaryStatistics();
SummaryStatistics sigmaStats = new SummaryStatistics();
SummaryStatistics shapeStats = new SummaryStatistics();
for (float[] impostorScores : impostorScoresArray) {
double[] scores = new double[impostorScores.length];
for (int i = 0; i < impostorScores.length; i++) {
scores[i] = impostorScores[i];
}
GaussianParetoDistribution dist = new GaussianParetoDistribution(scores);
shapeStats.addValue(dist.getShape());
muStats.addValue(dist.getMu());
sigmaStats.addValue(dist.getSigma());
}
String type = cmd.get("type");
if (muStats.getN() < 100) {
System.out.printf("Warning: result is statistically weak as not enough data recorded: %d < 100%n", muStats.getN());
}
// System.out.println("mu_stats:"+muStats);
// System.out.println("sigma_stats:"+sigmaStats);
// System.out.println("shape_stats:"+shapeStats);
System.out.printf("calibration.impostor_mu.print_%s=%.3f%n", type, muStats.getMean());
System.out.printf("calibration.impostor_sigma.print_%s=%.3f%n", type, sigmaStats.getMean());
System.out.printf("calibration.impostor_shape.print_%s=%.3f%n", type, shapeStats.getMean());
}
}
示例15: getSubGraphFrom
import org.apache.commons.math3.stat.descriptive.SummaryStatistics; //導入方法依賴的package包/類
private SubGraph getSubGraphFrom(Collection<Integer> jSubGraph, int subGraphId) {
SummaryStatistics summaryStatisticsQ = new SummaryStatistics();
SummaryStatistics summaryStatisticsArea = new SummaryStatistics();
List<GraphItem> graphItems = clusteringGraph.getItems();
for (Integer i : jSubGraph) {
GraphItem graphItem = graphItems.get(i);
graphItem.setSubgraphId(subGraphId);
summaryStatisticsQ.addValue(graphItem.getQ());
summaryStatisticsArea.addValue(graphItem.getArea());
}
return new SubGraph(subGraphId, jSubGraph, summaryStatisticsQ, summaryStatisticsArea);
}