當前位置: 首頁>>代碼示例>>Java>>正文


Java SummaryStatistics.getN方法代碼示例

本文整理匯總了Java中org.apache.commons.math3.stat.descriptive.SummaryStatistics.getN方法的典型用法代碼示例。如果您正苦於以下問題:Java SummaryStatistics.getN方法的具體用法?Java SummaryStatistics.getN怎麽用?Java SummaryStatistics.getN使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在org.apache.commons.math3.stat.descriptive.SummaryStatistics的用法示例。


在下文中一共展示了SummaryStatistics.getN方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。

示例1: getStats

import org.apache.commons.math3.stat.descriptive.SummaryStatistics; //導入方法依賴的package包/類
private static Stats getStats(FloatColumn values, SummaryStatistics summaryStatistics) {
    Stats stats = new Stats("Column: " + values.name());
    stats.min = (float) summaryStatistics.getMin();
    stats.max = (float) summaryStatistics.getMax();
    stats.n = summaryStatistics.getN();
    stats.sum = summaryStatistics.getSum();
    stats.variance = summaryStatistics.getVariance();
    stats.populationVariance = summaryStatistics.getPopulationVariance();
    stats.quadraticMean = summaryStatistics.getQuadraticMean();
    stats.geometricMean = summaryStatistics.getGeometricMean();
    stats.mean = summaryStatistics.getMean();
    stats.standardDeviation = summaryStatistics.getStandardDeviation();
    stats.sumOfLogs = summaryStatistics.getSumOfLogs();
    stats.sumOfSquares = summaryStatistics.getSumsq();
    stats.secondMoment = summaryStatistics.getSecondMoment();
    return stats;
}
 
開發者ID:jtablesaw,項目名稱:tablesaw,代碼行數:18,代碼來源:Stats.java

示例2: getSummaryStatisticsForCollection

import org.apache.commons.math3.stat.descriptive.SummaryStatistics; //導入方法依賴的package包/類
/**
 * This function will take an aggregated collection of Summary Statistics
 * and will generate a derived {@link SummaryStatistic} based on a flag for the  
 * desired summation.  This is particularly helpful for finding out the
 * means of the individual statistics of the collection.
 * For example, if you wanted to find out the mean of means of the collection
 * you would call this function like <p>
 * getSummaryStatisticsForCollection(aggregate,1).getMean(); <p>
 * Or if you wanted to determine the max number of annotations per
 * individual, you could call: <p>
 * getSummaryStatisticsForCollection(aggregate,5).getMax(); <p>
 * The stat flag should be set to the particular individual statistic that should
 * be summarized over.
 *
 * @param aggregate The aggregated collection of summary statistics
 * @param stat  Integer flag for the statistic (1:mean ; 2:sum; 3:min; 4:max; 5:N)
 * @return {@link SummaryStatistics} of the selected statistic
 */
public SummaryStatistics getSummaryStatisticsForCollection(Collection<SummaryStatistics> aggregate, Stat stat) {
	//LOG.info("Computing stats over collection of "+aggregate.size()+" elements ("+stat+"):");
	//TODO: turn stat into enum
	int x = 0;
	//To save memory, I am using SummaryStatistics, which does not store the values,
	//but this could be changed to DescriptiveStatistics to see values
	//as well as other statistical functions like distributions
	SummaryStatistics stats = new SummaryStatistics();
	Double v = 0.0;
	ArrayList<String> vals = new ArrayList();
	for (SummaryStatistics s : aggregate) {
		switch (stat) {
		case MEAN : v= s.getMean(); stats.addValue(s.getMean()); break;
		case SUM : v=s.getSum(); stats.addValue(s.getSum()); break;
		case MIN : v=s.getMin(); stats.addValue(s.getMin()); break;
		case MAX : v=s.getMax(); stats.addValue(s.getMax()); break;
		case N : v= ((int)s.getN())*1.0; stats.addValue(s.getN()); break;
		};
		//vals.add(v.toString());
	};
	//LOG.info("vals: "+vals.toString());
	return stats;
}
 
開發者ID:owlcollab,項目名稱:owltools,代碼行數:42,代碼來源:AbstractOwlSim.java

示例3: printImpostorThresholds

import org.apache.commons.math3.stat.descriptive.SummaryStatistics; //導入方法依賴的package包/類
private void printImpostorThresholds(Set<float[]> impostorScoresArray) {

		// Calculate Distributions - only with raw scores, not imp_prob scores
		if (!isImpProb) {

			SummaryStatistics muStats = new SummaryStatistics();
			SummaryStatistics sigmaStats = new SummaryStatistics();
			SummaryStatistics shapeStats = new SummaryStatistics();

			for (float[] impostorScores : impostorScoresArray) {

				double[] scores = new double[impostorScores.length];
				for (int i = 0; i < impostorScores.length; i++) {
					scores[i] = impostorScores[i];
				}

				GaussianParetoDistribution dist = new GaussianParetoDistribution(scores);
				shapeStats.addValue(dist.getShape());
				muStats.addValue(dist.getMu());
				sigmaStats.addValue(dist.getSigma());
			}

			String type = cmd.get("type");

			if (muStats.getN() < 100) {
				System.out.printf("Warning: result is statistically weak as not enough data recorded: %d < 100%n", muStats.getN());
			}

			// System.out.println("mu_stats:"+muStats);
			// System.out.println("sigma_stats:"+sigmaStats);
			// System.out.println("shape_stats:"+shapeStats);

			System.out.printf("calibration.impostor_mu.print_%s=%.3f%n", type, muStats.getMean());
			System.out.printf("calibration.impostor_sigma.print_%s=%.3f%n", type, sigmaStats.getMean());
			System.out.printf("calibration.impostor_shape.print_%s=%.3f%n", type, shapeStats.getMean());

		}
	}
 
開發者ID:Auraya,項目名稱:armorvox-client,代碼行數:39,代碼來源:ClientHandlerV5.java

示例4: getKernel

import org.apache.commons.math3.stat.descriptive.SummaryStatistics; //導入方法依賴的package包/類
/**
 * The within-bin smoothing kernel. Returns a Gaussian distribution
 * parameterized by {@code bStats}, unless the bin contains only one
 * observation, in which case a constant distribution is returned.
 *
 * @param bStats summary statistics for the bin
 * @return within-bin kernel parameterized by bStats
 */
protected RealDistribution getKernel(SummaryStatistics bStats) {
    if (bStats.getN() == 1 || bStats.getVariance() == 0) {
        return new ConstantRealDistribution(bStats.getMean());
    } else {
        return new NormalDistribution(randomData.getRandomGenerator(),
            bStats.getMean(), bStats.getStandardDeviation(),
            NormalDistribution.DEFAULT_INVERSE_ABSOLUTE_ACCURACY);
    }
}
 
開發者ID:biocompibens,項目名稱:SME,代碼行數:18,代碼來源:EmpiricalDistribution.java

示例5: computeAll

import org.apache.commons.math3.stat.descriptive.SummaryStatistics; //導入方法依賴的package包/類
public SummaryStatistics[] computeAll() {
	SummaryStatistics[] results = new SummaryStatistics[retrievers.length];
	for (int i = 0; i < retrievers.length; i++)
		results[i] = new SummaryStatistics();
	
	IntSet queries = groundtruth.queriesWithRelevantDocs();
	
	ProgressLogger pl = new ProgressLogger(LOGGER, "query retrievals");
	pl.expectedUpdates = queries.size() * retrievers.length;
	pl.start("Computing results for each of the " + queries.size() + 
			" queries and "+retrievers.length+ " retrieving algorithms..."  );
	
	for (int query : queries) {
		for (int i = 0; i < retrievers.length; i++) {
			double value = computeForQuery(query, retrievers[i]);
			if (Double.isNaN(value))
				continue;
			results[i].addValue(value);
			pl.update();
		}
	}
	
	pl.done();
	
	long nItems = results[0].getN();
	for (SummaryStatistics s : results)
		if (s.getN() != nItems)
			throw new IllegalStateException("The measure returned NaN differently for different algorithms.");
	
	print(retrievers, results);
	
	return results;
}
 
開發者ID:corradomonti,項目名稱:llamafur,代碼行數:34,代碼來源:AbstractMeasure.java

示例6: getKernel

import org.apache.commons.math3.stat.descriptive.SummaryStatistics; //導入方法依賴的package包/類
/**
 * The within-bin smoothing kernel. Returns a Gaussian distribution
 * parameterized by {@code bStats}, unless the bin contains only one
 * observation, in which case a constant distribution is returned.
 *
 * @param bStats summary statistics for the bin
 * @return within-bin kernel parameterized by bStats
 */
protected RealDistribution getKernel(SummaryStatistics bStats) {
    if (bStats.getN() == 1) {
        return new ConstantRealDistribution(bStats.getMean());
    } else {
        return new NormalDistribution(randomData.getRandomGenerator(),
            bStats.getMean(), bStats.getStandardDeviation(),
            NormalDistribution.DEFAULT_INVERSE_ABSOLUTE_ACCURACY);
    }
}
 
開發者ID:Quanticol,項目名稱:CARMA,代碼行數:18,代碼來源:EmpiricalDistribution.java

示例7: calcMeanCI

import org.apache.commons.math3.stat.descriptive.SummaryStatistics; //導入方法依賴的package包/類
private static double calcMeanCI(SummaryStatistics stats, double level) {
    try {
        TDistribution tDist = new TDistribution(stats.getN() - 1);
        double critVal = tDist.inverseCumulativeProbability(1.0 - (1 - level) / 2);
        return critVal * stats.getStandardDeviation() / Math.sqrt(stats.getN());
    } catch (MathIllegalArgumentException e) {
        return Double.NaN;
    }
}
 
開發者ID:dbunibas,項目名稱:BART,代碼行數:10,代碼來源:EstimateRepairability.java

示例8: computeSystemStats

import org.apache.commons.math3.stat.descriptive.SummaryStatistics; //導入方法依賴的package包/類
public void computeSystemStats() throws UnknownOWLClassException {
	Set<OWLNamedIndividual> insts = this.getAllElements();
	LOG.info("Computing system stats for " + insts.size() + " individuals");
	LOG.info("Creating singular stat scores for all IDspaces");

	Collection<SummaryStatistics> aggregate = new ArrayList<SummaryStatistics>();

	this.overallStats = new SummaryStatistics();

	int counter = 0;
	for (OWLNamedIndividual i : insts) {			
		counter++;
		SummaryStatistics statsPerIndividual = computeIndividualStats(i);			
		//put this individual into the aggregate
		if (statsPerIndividual.getN() == 0) {
			LOG.error("No annotations found for Individual "+i.toStringID());
		} else {
			aggregate.add(statsPerIndividual);
		}
		//TODO: put this individual into an idSpace aggregate
		//			String idSpace = i.getIRI().getNamespace();
		this.overallStats.addValue(statsPerIndividual.getMean());
		if (counter % 1000 == 0) {
			LOG.info("Finished "+counter+" individuals");
		}
	}
	//		this.aggregateStatsPerIndividual = AggregateSummaryStatistics.aggregate(aggregate);	
	StatsPerIndividual myStats = new StatsPerIndividual();

	myStats.mean = getSummaryStatisticsForCollection(aggregate,Stat.MEAN);
	myStats.sum  = getSummaryStatisticsForCollection(aggregate,Stat.SUM);
	myStats.min  = getSummaryStatisticsForCollection(aggregate,Stat.MIN);
	myStats.max  = getSummaryStatisticsForCollection(aggregate,Stat.MAX);
	myStats.n  = getSummaryStatisticsForCollection(aggregate,Stat.N);		
	myStats.aggregate = AggregateSummaryStatistics.aggregate(aggregate);
	this.overallSummaryStatsPerIndividual = myStats;
	LOG.info("Finished computing overall statsPerIndividual:\n"+this.getSummaryStatistics().toString());
}
 
開發者ID:owlcollab,項目名稱:owltools,代碼行數:39,代碼來源:AbstractOwlSim.java

示例9: computeSystemStatsForSubgraph

import org.apache.commons.math3.stat.descriptive.SummaryStatistics; //導入方法依賴的package包/類
public void computeSystemStatsForSubgraph(OWLClass c) throws UnknownOWLClassException {
	Set<OWLNamedIndividual> insts = this.getAllElements();
	LOG.info("Computing system stats for subgraph rooted at" + c.toString() +" with "+ insts.size() + " individuals");
	//		LOG.info("Creating singular stat scores for all IDspaces");

	Collection<SummaryStatistics> aggregate = new ArrayList<SummaryStatistics>();

	SummaryStatistics subgraphStats = new SummaryStatistics();

	for (OWLNamedIndividual i : insts) {			
		SummaryStatistics statsPerIndividual = computeIndividualStatsForSubgraph(i,c);			
		//put this individual into the aggregate
		if (statsPerIndividual.getN() == 0) {
			//LOG.info("No annotations found in this subgraph for Individual "+i.toStringID());
		} else {
			//LOG.info(statsPerIndividual.getN()+" Annotations found in this subgraph for Individual "+i.toStringID());
			aggregate.add(statsPerIndividual);
		}
		//TODO: put this individual into an idSpace aggregate
		//String idSpace = i.getIRI().getNamespace();
		subgraphStats.addValue(statsPerIndividual.getMean());
	}		
	StatsPerIndividual myStats = new StatsPerIndividual();
	myStats.mean = getSummaryStatisticsForCollection(aggregate,Stat.MEAN);
	myStats.sum  = getSummaryStatisticsForCollection(aggregate,Stat.SUM);
	myStats.min  = getSummaryStatisticsForCollection(aggregate,Stat.MIN);
	myStats.max  = getSummaryStatisticsForCollection(aggregate,Stat.MAX);
	myStats.n  = getSummaryStatisticsForCollection(aggregate,Stat.N);		
	this.subgraphSummaryStatsPerIndividual.put(c, myStats);
	LOG.info("Finished omputing system stats for subgraph rooted at" + c.toString());
}
 
開發者ID:owlcollab,項目名稱:owltools,代碼行數:32,代碼來源:AbstractOwlSim.java

示例10: calcMeanCI

import org.apache.commons.math3.stat.descriptive.SummaryStatistics; //導入方法依賴的package包/類
private static double calcMeanCI( SummaryStatistics stats, double level )
{
    // Create T Distribution with N-1 degrees of freedom
    TDistribution tDist = new TDistribution( stats.getN() - 1 );
    // Calculate critical value
    double critVal = tDist.inverseCumulativeProbability( 1.0 - ( 1 - level ) / 2 );
    // Calculate confidence interval
    return critVal * stats.getStandardDeviation() / Math.sqrt( stats.getN() );
}
 
開發者ID:RUB-NDS,項目名稱:WS-Attacker,代碼行數:10,代碼來源:StatisticTest.java

示例11: add

import org.apache.commons.math3.stat.descriptive.SummaryStatistics; //導入方法依賴的package包/類
@Override
public void add(String cacheName, TransactionStats txStats)
{
    boolean registerCacheStats = false;
    WriteLock writeLock = getWriteLock(cacheName);
    writeLock.lock();
    try
    {
        // Are we adding new stats for a previously unseen cache?
        registerCacheStats = !cacheToStatsMap.containsKey(cacheName);
        if (registerCacheStats)
        {
            // There are no statistics yet for this cache. 
            cacheToStatsMap.put(cacheName, new HashMap<OpType, OperationStats>());
        }
        Map<OpType, OperationStats> cacheStats = cacheToStatsMap.get(cacheName);
        
        for (OpType opType : OpType.values())
        {                
            SummaryStatistics txOpSummary = txStats.getTimings(opType);
            long count = txOpSummary.getN();
            double totalTime = txOpSummary.getSum();
                
            OperationStats oldStats = cacheStats.get(opType);
            OperationStats newStats;
            if (oldStats == null)
            {
                newStats = new OperationStats(totalTime, count);
            }
            else
            {
                newStats = new OperationStats(oldStats, totalTime, count);
            }
            cacheStats.put(opType, newStats);
        }
    }
    finally
    {
        writeLock.unlock();
    }
    
    if (registerCacheStats)
    {
        // We've added stats for a previously unseen cache, raise an event
        // so that an MBean for the cache may be registered, for example. 
        applicationContext.publishEvent(new CacheStatisticsCreated(this, cacheName));
    }
}
 
開發者ID:Alfresco,項目名稱:alfresco-repository,代碼行數:49,代碼來源:InMemoryCacheStatistics.java

示例12: getCount

import org.apache.commons.math3.stat.descriptive.SummaryStatistics; //導入方法依賴的package包/類
public long getCount(OpType op)
{
    SummaryStatistics stats = getTimings(op);
    return stats.getN();
}
 
開發者ID:Alfresco,項目名稱:alfresco-repository,代碼行數:6,代碼來源:TransactionStats.java

示例13: anovaStats

import org.apache.commons.math3.stat.descriptive.SummaryStatistics; //導入方法依賴的package包/類
/**
 * This method actually does the calculations (except P-value).
 *
 * @param categoryData <code>Collection</code> of <code>double[]</code>
 * arrays each containing data for one category
 * @param allowOneElementData if true, allow computation for one catagory
 * only or for one data element per category
 * @return computed AnovaStats
 * @throws NullArgumentException if <code>categoryData</code> is <code>null</code>
 * @throws DimensionMismatchException if <code>allowOneElementData</code> is false and the number of
 * categories is less than 2 or a contained SummaryStatistics does not contain
 * at least two values
 */
private AnovaStats anovaStats(final Collection<SummaryStatistics> categoryData,
                              final boolean allowOneElementData)
    throws NullArgumentException, DimensionMismatchException {

    MathUtils.checkNotNull(categoryData);

    if (!allowOneElementData) {
        // check if we have enough categories
        if (categoryData.size() < 2) {
            throw new DimensionMismatchException(LocalizedFormats.TWO_OR_MORE_CATEGORIES_REQUIRED,
                                                 categoryData.size(), 2);
        }

        // check if each category has enough data
        for (final SummaryStatistics array : categoryData) {
            if (array.getN() <= 1) {
                throw new DimensionMismatchException(LocalizedFormats.TWO_OR_MORE_VALUES_IN_CATEGORY_REQUIRED,
                                                     (int) array.getN(), 2);
            }
        }
    }

    int dfwg = 0;
    double sswg = 0;
    double totsum = 0;
    double totsumsq = 0;
    int totnum = 0;

    for (final SummaryStatistics data : categoryData) {

        final double sum = data.getSum();
        final double sumsq = data.getSumsq();
        final int num = (int) data.getN();
        totnum += num;
        totsum += sum;
        totsumsq += sumsq;

        dfwg += num - 1;
        final double ss = sumsq - ((sum * sum) / num);
        sswg += ss;
    }

    final double sst = totsumsq - ((totsum * totsum) / totnum);
    final double ssbg = sst - sswg;
    final int dfbg = categoryData.size() - 1;
    final double msbg = ssbg / dfbg;
    final double mswg = sswg / dfwg;
    final double F = msbg / mswg;

    return new AnovaStats(dfbg, dfwg, F);

}
 
開發者ID:biocompibens,項目名稱:SME,代碼行數:66,代碼來源:OneWayAnova.java

示例14: doBins

import org.apache.commons.math3.stat.descriptive.SummaryStatistics; //導入方法依賴的package包/類
public static BinnedData doBins(IDocument<?> o)
{
  // collate the values into an array
  double[] data = new double[o.size()];
  
  // Add the data from the array
  Iterator<Double> oIter = o.getIndexIterator();
  int ctr = 0;
  while(oIter.hasNext())
  {
    data[ctr++] = oIter.next();
  }
  
  // Get a DescriptiveStatistics instance
  DescriptiveStatistics stats = new DescriptiveStatistics(data);

  // also do some frequency binning
  double range = stats.getMax() - stats.getMin();

  // aah, double-check we don't have zero range
  final int binCount;
  final int maxRange = 30;
  if (range > maxRange)
  {
    binCount = maxRange;
  }
  else
  {
    binCount = (int) Math.max(2, range);
  }

  BinnedData res = new BinnedData();

  if (range > THRESHOLD_VALUE)
  {

    long[] histogram = new long[binCount];
    EmpiricalDistribution distribution = new EmpiricalDistribution(binCount);
    distribution.load(data);

    int k = 0;
    for (SummaryStatistics sStats : distribution.getBinStats())
    {
      histogram[k++] = sStats.getN();
    }

    long rangeSoFar = (long) stats.getMin();
    long rangeStep = (long) (range / binCount);
    for (int i = 0; i < histogram.length; i++)
    {
      long l = histogram[i];
      res.add(new Bin(rangeSoFar, rangeSoFar + rangeStep, l));
      rangeSoFar += rangeStep;
    }
  }
  return res;
}
 
開發者ID:debrief,項目名稱:limpet,代碼行數:58,代碼來源:TimeFrequencyBins.java

示例15: binTheseValues

import org.apache.commons.math3.stat.descriptive.SummaryStatistics; //導入方法依賴的package包/類
public static BinnedData binTheseValues(double[] data)
{
  // Get a DescriptiveStatistics instance
  DescriptiveStatistics stats = new DescriptiveStatistics(data);

  // also do some frequency binning
  double range = stats.getMax() - stats.getMin();

  // aah, double-check we don't have zero range
  final int binCount;
  if (range > DEFAULT_NUM_BINS)
  {
    binCount = DEFAULT_NUM_BINS;
  }
  else if(range > MIN_NUM_BINS)
  {
    binCount = (int) range;
  }
  else 
  {
    binCount = MIN_NUM_BINS;
  }

  BinnedData res = new BinnedData();

  if (range > THRESHOLD_VALUE)
  {

    long[] histogram = new long[binCount];
    EmpiricalDistribution distribution = new EmpiricalDistribution(binCount);
    distribution.load(data);

    int k = 0;
    for (SummaryStatistics sStats : distribution.getBinStats())
    {
      histogram[k++] = sStats.getN();
    }

    double rangeSoFar = stats.getMin();
    double rangeStep = range / binCount;
    for (int i = 0; i < histogram.length; i++)
    {
      long l = histogram[i];
      res.add(new Bin(rangeSoFar, rangeSoFar + rangeStep, l));
      rangeSoFar += rangeStep;
    }
  }
  return res;
}
 
開發者ID:debrief,項目名稱:limpet,代碼行數:50,代碼來源:QuantityFrequencyBins.java


注:本文中的org.apache.commons.math3.stat.descriptive.SummaryStatistics.getN方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。