當前位置: 首頁>>代碼示例>>Java>>正文


Java RealMatrix.setEntry方法代碼示例

本文整理匯總了Java中org.apache.commons.math3.linear.RealMatrix.setEntry方法的典型用法代碼示例。如果您正苦於以下問題:Java RealMatrix.setEntry方法的具體用法?Java RealMatrix.setEntry怎麽用?Java RealMatrix.setEntry使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在org.apache.commons.math3.linear.RealMatrix的用法示例。


在下文中一共展示了RealMatrix.setEntry方法的12個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。

示例1: multiplyElementWise

import org.apache.commons.math3.linear.RealMatrix; //導入方法依賴的package包/類
public static RealMatrix multiplyElementWise(final RealMatrix matrix1,
        final RealMatrix matrix2) {
    if (matrix1.getRowDimension() != matrix2.getRowDimension() || matrix1
            .getColumnDimension() != matrix2.getColumnDimension()) {
        throw new IllegalArgumentException(
                "The matrices must be of the same dimensions!");
    }

    final RealMatrix result = matrix1.createMatrix(
            matrix1.getRowDimension(), matrix1.getColumnDimension());

    for (int r = 0; r < matrix1.getRowDimension(); r++) {
        for (int c = 0; c < matrix1.getColumnDimension(); c++) {
            result.setEntry(r, c,
                    matrix1.getEntry(r, c) * matrix2.getEntry(r, c));
        }
    }

    return result;
}
 
開發者ID:knime,項目名稱:knime-activelearning,代碼行數:21,代碼來源:MatrixFunctions.java

示例2: correlation2Distance

import org.apache.commons.math3.linear.RealMatrix; //導入方法依賴的package包/類
public static RealMatrix correlation2Distance(RealMatrix rMat) {

        // Copy to retain Dimensions
        RealMatrix dMat = rMat.copy();

        for (int row = 0; row < rMat.getRowDimension(); row++) {
            for (int col = 0; col < rMat.getColumnDimension(); col++) {
                double r = rMat.getEntry(row, col);

                //Apply cosine theorem:
                //https://stats.stackexchange.com/questions/165194/using-correlation-as-distance-metric-for-hierarchical-clustering
                double d = Math.sqrt(2*(1-r));
                dMat.setEntry(row, col, d);
            }
        }

        return dMat;
    }
 
開發者ID:jmueller95,項目名稱:CORNETTO,代碼行數:19,代碼來源:AnalysisData.java

示例3: createX

import org.apache.commons.math3.linear.RealMatrix; //導入方法依賴的package包/類
/**
 * Creates the X design matrix for this regression model
 * @return  the X design matrix
 */
RealMatrix createX() {
    final int n = frame.rows().count();
    final int offset = hasIntercept() ? 1 : 0;
    final int p = hasIntercept() ? regressors.size() + 1 : regressors.size();
    final int[] colIndexes = regressors.stream().mapToInt(k -> frame.cols().ordinalOf(k)).toArray();
    final RealMatrix x = new Array2DRowRealMatrix(n, p);
    for (int i = 0; i < n; ++i) {
        x.setEntry(i, 0, 1d);
        for (int j = offset; j < p; ++j) {
            final double value = frame.data().getDouble(i, colIndexes[j - offset]);
            x.setEntry(i, j, value);
        }
    }
    return x;
}
 
開發者ID:zavtech,項目名稱:morpheus-core,代碼行數:20,代碼來源:XDataFrameLeastSquares.java

示例4: testRealMatrixUpdates

import org.apache.commons.math3.linear.RealMatrix; //導入方法依賴的package包/類
@Test()
public void testRealMatrixUpdates() {
    final DataFrame<String,String> frame = TestDataFrames.random(double.class, 100, 100);
    final RealMatrix matrix = frame.export().asApacheMatrix();
    Assert.assertEquals(frame.rowCount(), matrix.getRowDimension(), "Row count matches");
    Assert.assertEquals(frame.colCount(), matrix.getColumnDimension(), "Column count matches");
    for (int i=0; i<frame.rowCount(); ++i) {
        for (int j = 0; j<frame.colCount(); ++j) {
            matrix.setEntry(i, j, Math.random());
        }
    }
    for (int i=0; i<frame.rowCount(); ++i) {
        for (int j = 0; j<frame.colCount(); ++j) {
            final double v1 = frame.data().getDouble(i, j);
            final double v2 = matrix.getEntry(i, j);
            Assert.assertEquals(v1, v2, "Values match at " + i + "," + j);
        }
    }
}
 
開發者ID:zavtech,項目名稱:morpheus-core,代碼行數:20,代碼來源:ExportTests.java

示例5: squared_euclidean_distances

import org.apache.commons.math3.linear.RealMatrix; //導入方法依賴的package包/類
private RealMatrix squared_euclidean_distances(final RealMatrix x,
        final RealMatrix y) {
    final RealMatrix distmat = MatrixUtils
            .createRealMatrix(x.getRowDimension(), y.getRowDimension());

    for (int i = 0; i < x.getRowDimension(); i++) {
        for (int j = 0; j < y.getRowDimension(); j++) {
            final RealVector buff =
                    x.getRowVector(i).subtract(y.getRowVector(j));
            distmat.setEntry(i, j, buff.dotProduct(buff));
        }
    }

    return distmat;
}
 
開發者ID:knime,項目名稱:knime-activelearning,代碼行數:16,代碼來源:MultiClassKNFST.java

示例6: pow

import org.apache.commons.math3.linear.RealMatrix; //導入方法依賴的package包/類
public static RealMatrix pow(final RealMatrix matrix, final double power) {
    final RealMatrix result = matrix.createMatrix(matrix.getRowDimension(),
            matrix.getColumnDimension());
    for (int r = 0; r < result.getRowDimension(); r++) {
        for (int c = 0; c < result.getColumnDimension(); c++) {
            result.setEntry(r, c, Math.pow(matrix.getEntry(r, c), power));
        }
    }
    return result;
}
 
開發者ID:knime,項目名稱:knime-activelearning,代碼行數:11,代碼來源:MatrixFunctions.java

示例7: fit

import org.apache.commons.math3.linear.RealMatrix; //導入方法依賴的package包/類
@Override
public void fit(List<double[]> X, List<double[]> Y) {	// fits n-dimensional data sets with affine model
	if (X.size() != Y.size())
		throw new IllegalArgumentException("point sequences X, Y must have same length");
	this.m = X.size();
	this.n = X.get(0).length;
	
	RealMatrix M = MatrixUtils.createRealMatrix(2 * m, 2 * (n + 1));
	RealVector b = new ArrayRealVector(2 * m);
	
	// mount matrix M:
	int row = 0;
	for (double[] x : X) {
		for (int j = 0; j < n; j++) {
			M.setEntry(row, j, x[j]);
			M.setEntry(row, n, 1);
			row++;
		}
		for (int j = 0; j < n; j++) {
			M.setEntry(row, j + n + 1, x[j]);
			M.setEntry(row, 2 * n + 1, 1);
			row++;
		}
	}
	
	// mount vector b
	row = 0;
	for (double[] y : Y) {
		for (int j = 0; j < n; j++) {
			b.setEntry(row, y[j]);
			row++;
		}
	}
	
	SingularValueDecomposition svd = new SingularValueDecomposition(M);
	DecompositionSolver solver = svd.getSolver();
	RealVector a = solver.solve(b);
	A = makeTransformationMatrix(a);
}
 
開發者ID:imagingbook,項目名稱:imagingbook-common,代碼行數:40,代碼來源:AffineFit.java

示例8: makeTransformationMatrix

import org.apache.commons.math3.linear.RealMatrix; //導入方法依賴的package包/類
private RealMatrix makeTransformationMatrix(RealVector a) {
	RealMatrix A = MatrixUtils.createRealMatrix(n, n + 1);
	int i = 0;
	for (int row = 0; row < n; row++) {
		// get (n+1) elements from a and place in row
		for (int j = 0; j <= n; j++) {
			A.setEntry(row, j, a.getEntry(i));
			i++;
		}
	}
	A.setEntry(n - 1, n, 1);
	return A;
}
 
開發者ID:imagingbook,項目名稱:imagingbook-common,代碼行數:14,代碼來源:AffineFit.java

示例9: conditionCovarianceMatrix

import org.apache.commons.math3.linear.RealMatrix; //導入方法依賴的package包/類
/**
 * Conditions the supplied covariance matrix by enforcing
 * positive eigenvalues along its main diagonal. 
 * @param S original covariance matrix
 * @return modified covariance matrix
 */
private RealMatrix conditionCovarianceMatrix(RealMatrix S) {
	EigenDecomposition ed = new EigenDecomposition(S);  // S  ->  V . D . V^T
	RealMatrix V  = ed.getV();
	RealMatrix D  = ed.getD();	// diagonal matrix of eigenvalues
	RealMatrix VT = ed.getVT();
	for (int i = 0; i < D.getRowDimension(); i++) {
		D.setEntry(i, i, Math.max(D.getEntry(i, i), 10E-6));	// setting eigenvalues to zero is not enough!
	}
	return V.multiply(D).multiply(VT);
}
 
開發者ID:imagingbook,項目名稱:imagingbook-common,代碼行數:17,代碼來源:MahalanobisDistance.java

示例10: computeBeta

import org.apache.commons.math3.linear.RealMatrix; //導入方法依賴的package包/類
/**
 *
 * @param y     the response vector
 * @param x     the design matrix
 */
private RealMatrix computeBeta(RealVector y, RealMatrix x) {
    if (solver == Solver.QR) {
        return computeBetaQR(y, x);
    } else {
        final int n = x.getRowDimension();
        final int p = x.getColumnDimension();
        final int offset = hasIntercept() ? 1 : 0;
        final RealMatrix xT = x.transpose();
        final RealMatrix xTxInv = new LUDecomposition(xT.multiply(x)).getSolver().getInverse();
        final RealVector betaVector = xTxInv.multiply(xT).operate(y);
        final RealVector residuals = y.subtract(x.operate(betaVector));
        this.rss = residuals.dotProduct(residuals);
        this.errorVariance = rss / (n - p);
        this.stdError = Math.sqrt(errorVariance);
        this.residuals = createResidualsFrame(residuals);
        final RealMatrix covMatrix = xTxInv.scalarMultiply(errorVariance);
        final RealMatrix result = new Array2DRowRealMatrix(p, 2);
        if (hasIntercept()) {
            result.setEntry(0, 0, betaVector.getEntry(0));      //Intercept coefficient
            result.setEntry(0, 1, covMatrix.getEntry(0, 0));    //Intercept variance
        }
        for (int i = 0; i < getRegressors().size(); i++) {
            final int index = i + offset;
            final double variance = covMatrix.getEntry(index, index);
            result.setEntry(index, 1, variance);
            result.setEntry(index, 0, betaVector.getEntry(index));
        }
        return result;
    }
}
 
開發者ID:zavtech,項目名稱:morpheus-core,代碼行數:36,代碼來源:XDataFrameLeastSquares.java

示例11: computeBetaQR

import org.apache.commons.math3.linear.RealMatrix; //導入方法依賴的package包/類
/**
 * Computes model parameters and parameter variance using a QR decomposition of the X matrix
 * @param y     the response vector
 * @param x     the design matrix
 */
private RealMatrix computeBetaQR(RealVector y, RealMatrix x) {
    final int n = x.getRowDimension();
    final int p = x.getColumnDimension();
    final int offset = hasIntercept() ? 1 : 0;
    final QRDecomposition decomposition = new QRDecomposition(x, threshold);
    final RealVector betaVector = decomposition.getSolver().solve(y);
    final RealVector residuals = y.subtract(x.operate(betaVector));
    this.rss = residuals.dotProduct(residuals);
    this.errorVariance = rss / (n - p);
    this.stdError = Math.sqrt(errorVariance);
    this.residuals = createResidualsFrame(residuals);
    final RealMatrix rAug = decomposition.getR().getSubMatrix(0, p - 1, 0, p - 1);
    final RealMatrix rInv = new LUDecomposition(rAug).getSolver().getInverse();
    final RealMatrix covMatrix = rInv.multiply(rInv.transpose()).scalarMultiply(errorVariance);
    final RealMatrix result = new Array2DRowRealMatrix(p, 2);
    if (hasIntercept()) {
        result.setEntry(0, 0, betaVector.getEntry(0));      //Intercept coefficient
        result.setEntry(0, 1, covMatrix.getEntry(0, 0));    //Intercept variance
    }
    for (int i = 0; i < getRegressors().size(); i++) {
        final int index = i + offset;
        final double variance = covMatrix.getEntry(index, index);
        result.setEntry(index, 1, variance);
        result.setEntry(index, 0, betaVector.getEntry(index));
    }
    return result;
}
 
開發者ID:zavtech,項目名稱:morpheus-core,代碼行數:33,代碼來源:XDataFrameLeastSquares.java

示例12: weightedLinearCorr

import org.apache.commons.math3.linear.RealMatrix; //導入方法依賴的package包/類
/**
 *
 * @param y
 * @param x
 * @param sigmaRhoY
 * @return
 */
public static WeightedLinearCorrResults weightedLinearCorr(double[] y, double[] x, double[][] sigmaRhoY) {
    WeightedLinearCorrResults weightedLinearCorrResults = new WeightedLinearCorrResults();

    RealMatrix omega = new BlockRealMatrix(convertCorrelationsToCovariances(sigmaRhoY));
    RealMatrix invOmega = MatrixUtils.inverse(omega);
    int n = y.length;

    double mX = 0;
    double pX = 0;
    double pY = 0;
    double pXY = 0;
    double w = 0;

    for (int i = 0; i < n; i++) {
        for (int j = 0; j < n; j++) {
            double invOm = invOmega.getEntry(i, j);
            w += invOm;
            pX += (invOm * (x[i] + x[j]));
            pY += (invOm * (y[i] + y[j]));
            pXY += (invOm * (((x[i] * y[j]) + (x[j] * y[i]))));
            mX += (invOm * x[i] * x[j]);
        }
    }       
    double slope = ((2 * pXY * w) - (pX * pY)) / ((4 * mX * w) - (pX * pX));
    double intercept = (pY - (slope * pX)) / (2 * w);

    RealMatrix fischer = new BlockRealMatrix(new double[][]{{mX, pX / 2.0}, {pX / 2.0, w}});
    RealMatrix fischerInv = MatrixUtils.inverse(fischer);

    double slopeSig = Math.sqrt(fischerInv.getEntry(0, 0));
    double interceptSig = Math.sqrt(fischerInv.getEntry(1, 1));
    double slopeInterceptCov = fischerInv.getEntry(0, 1);
    
    RealMatrix resid = new BlockRealMatrix(n, 1);
    for (int i = 0; i < n; i++) {
        resid.setEntry(i, 0, y[i] - (slope * x[i]) - intercept);
    }

    RealMatrix residT = resid.transpose();
    RealMatrix mM = residT.multiply(invOmega).multiply(resid);

    double sumSqWtdResids = mM.getEntry(0, 0);
    double mswd = sumSqWtdResids / (n - 2);

    // http://commons.apache.org/proper/commons-math/apidocs/org/apache/commons/math3/distribution/FDistribution.html
    FDistribution fdist = new org.apache.commons.math3.distribution.FDistribution((n - 2), 1E9);
    double prob = 1.0 - fdist.cumulativeProbability(mswd);
    
    weightedLinearCorrResults.setBad(false);
    weightedLinearCorrResults.setSlope(slope);
    weightedLinearCorrResults.setIntercept(intercept);
    weightedLinearCorrResults.setSlopeSig(slopeSig);
    weightedLinearCorrResults.setInterceptSig(interceptSig);
    weightedLinearCorrResults.setSlopeInterceptCov(slopeInterceptCov);
    weightedLinearCorrResults.setMswd(mswd);
    weightedLinearCorrResults.setProb(prob);

    return weightedLinearCorrResults;
}
 
開發者ID:CIRDLES,項目名稱:Squid,代碼行數:67,代碼來源:WeightedMeanCalculators.java


注:本文中的org.apache.commons.math3.linear.RealMatrix.setEntry方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。