本文整理匯總了Java中org.apache.commons.math3.linear.RealMatrix類的典型用法代碼示例。如果您正苦於以下問題:Java RealMatrix類的具體用法?Java RealMatrix怎麽用?Java RealMatrix使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。
RealMatrix類屬於org.apache.commons.math3.linear包,在下文中一共展示了RealMatrix類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。
示例1: getTruncatedSVD
import org.apache.commons.math3.linear.RealMatrix; //導入依賴的package包/類
/**
* truncated SVD as taken from http://stackoverflow.com/questions/19957076/best-way-to-compute-a-truncated-singular-value-decomposition-in-java
*/
static double[][] getTruncatedSVD(double[][] matrix, final int k) {
SingularValueDecomposition svd = new SingularValueDecomposition(MatrixUtils.createRealMatrix(matrix));
double[][] truncatedU = new double[svd.getU().getRowDimension()][k];
svd.getU().copySubMatrix(0, truncatedU.length - 1, 0, k - 1, truncatedU);
double[][] truncatedS = new double[k][k];
svd.getS().copySubMatrix(0, k - 1, 0, k - 1, truncatedS);
double[][] truncatedVT = new double[k][svd.getVT().getColumnDimension()];
svd.getVT().copySubMatrix(0, k - 1, 0, truncatedVT[0].length - 1, truncatedVT);
RealMatrix approximatedSvdMatrix = (MatrixUtils.createRealMatrix(truncatedU)).multiply(
MatrixUtils.createRealMatrix(truncatedS)).multiply(MatrixUtils.createRealMatrix(truncatedVT));
return approximatedSvdMatrix.getData();
}
示例2: apacheCommonsExample
import org.apache.commons.math3.linear.RealMatrix; //導入依賴的package包/類
public void apacheCommonsExample() {
double[][] A = {
{0.1950, 0.0311},
{0.3588, 0.2203},
{0.1716, 0.5931},
{0.2105, 0.3242}};
double[][] B = {
{0.0502, 0.9823, 0.9472},
{0.5732, 0.2694, 0.916}};
RealMatrix aRealMatrix = new Array2DRowRealMatrix(A);
RealMatrix bRealMatrix = new Array2DRowRealMatrix(B);
RealMatrix cRealMatrix = aRealMatrix.multiply(bRealMatrix);
System.out.println();
for (int i = 0; i < cRealMatrix.getRowDimension(); i++) {
System.out.println(cRealMatrix.getRowVector(i));
}
}
開發者ID:PacktPublishing,項目名稱:Machine-Learning-End-to-Endguide-for-Java-developers,代碼行數:21,代碼來源:MathExamples.java
示例3: testRealMatrixUpdates
import org.apache.commons.math3.linear.RealMatrix; //導入依賴的package包/類
@Test()
public void testRealMatrixUpdates() {
final DataFrame<String,String> frame = TestDataFrames.random(double.class, 100, 100);
final RealMatrix matrix = frame.export().asApacheMatrix();
Assert.assertEquals(frame.rowCount(), matrix.getRowDimension(), "Row count matches");
Assert.assertEquals(frame.colCount(), matrix.getColumnDimension(), "Column count matches");
for (int i=0; i<frame.rowCount(); ++i) {
for (int j = 0; j<frame.colCount(); ++j) {
matrix.setEntry(i, j, Math.random());
}
}
for (int i=0; i<frame.rowCount(); ++i) {
for (int j = 0; j<frame.colCount(); ++j) {
final double v1 = frame.data().getDouble(i, j);
final double v2 = matrix.getEntry(i, j);
Assert.assertEquals(v1, v2, "Values match at " + i + "," + j);
}
}
}
示例4: createX
import org.apache.commons.math3.linear.RealMatrix; //導入依賴的package包/類
/**
* Creates the X design matrix for this regression model
* @return the X design matrix
*/
RealMatrix createX() {
final int n = frame.rows().count();
final int offset = hasIntercept() ? 1 : 0;
final int p = hasIntercept() ? regressors.size() + 1 : regressors.size();
final int[] colIndexes = regressors.stream().mapToInt(k -> frame.cols().ordinalOf(k)).toArray();
final RealMatrix x = new Array2DRowRealMatrix(n, p);
for (int i = 0; i < n; ++i) {
x.setEntry(i, 0, 1d);
for (int j = offset; j < p; ++j) {
final double value = frame.data().getDouble(i, colIndexes[j - offset]);
x.setEntry(i, j, value);
}
}
return x;
}
示例5: testPseudoInverse
import org.apache.commons.math3.linear.RealMatrix; //導入依賴的package包/類
@Test(dataProvider = "styles")
public void testPseudoInverse(DataFrameAlgebra.Lib lib, boolean parallel) {
DataFrameAlgebra.LIBRARY.set(lib);
final DataFrame<Integer,String> source = DataFrame.read().csv("./src/test/resources/pca/svd/poppet-svd-eigenvectors.csv");
Array.of(20, 77, 95, 135, 233, 245).forEach(count -> {
final DataFrame<Integer,String> frame = source.cols().select(col -> col.ordinal() < count);
final DataFrame<Integer,Integer> inverse = frame.inverse();
final RealMatrix matrix = new QRDecomposition(toMatrix(frame)).getSolver().getInverse();
assertEquals(inverse, matrix);
});
}
示例6: multiplyElementWise
import org.apache.commons.math3.linear.RealMatrix; //導入依賴的package包/類
public static RealMatrix multiplyElementWise(final RealMatrix matrix1,
final RealMatrix matrix2) {
if (matrix1.getRowDimension() != matrix2.getRowDimension() || matrix1
.getColumnDimension() != matrix2.getColumnDimension()) {
throw new IllegalArgumentException(
"The matrices must be of the same dimensions!");
}
final RealMatrix result = matrix1.createMatrix(
matrix1.getRowDimension(), matrix1.getColumnDimension());
for (int r = 0; r < matrix1.getRowDimension(); r++) {
for (int c = 0; c < matrix1.getColumnDimension(); c++) {
result.setEntry(r, c,
matrix1.getEntry(r, c) * matrix2.getEntry(r, c));
}
}
return result;
}
示例7: calculateRowVectorDistances
import org.apache.commons.math3.linear.RealMatrix; //導入依賴的package包/類
public static double[]
calculateRowVectorDistances(final RealMatrix matrix) {
final double[] distances = new double[matrix.getRowDimension()
* (matrix.getRowDimension() - 1) / 2];
int count = 1;
int iterator = 0;
for (int r1 = 0; r1 < matrix.getRowDimension(); r1++) {
for (int r2 = count; r2 < matrix.getRowDimension(); r2++) {
distances[iterator++] = matrix.getRowVector(r1)
.getDistance(matrix.getRowVector(r2));
}
count++;
}
return distances;
}
示例8: centerKernelMatrix
import org.apache.commons.math3.linear.RealMatrix; //導入依賴的package包/類
private static RealMatrix
centerKernelMatrix(final RealMatrix kernelMatrix) {
// get size of kernelMatrix
final int n = kernelMatrix.getRowDimension();
// get mean values for each row/column
final RealVector columnMeans =
MatrixFunctions.columnMeans(kernelMatrix);
final double matrixMean = MatrixFunctions.mean(kernelMatrix);
RealMatrix centeredKernelMatrix = kernelMatrix.copy();
for (int k = 0; k < n; k++) {
centeredKernelMatrix.setRowVector(k,
centeredKernelMatrix.getRowVector(k).subtract(columnMeans));
centeredKernelMatrix.setColumnVector(k, centeredKernelMatrix
.getColumnVector(k).subtract(columnMeans));
}
centeredKernelMatrix = centeredKernelMatrix.scalarAdd(matrixMean);
return centeredKernelMatrix;
}
示例9: makeDataMatrix
import org.apache.commons.math3.linear.RealMatrix; //導入依賴的package包/類
private RealMatrix makeDataMatrix(List<double[]> X, double[] meanX) {
if (meanX == null) {
return makeDataMatrix(X);
}
final int m = X.size();
final int n = X.get(0).length;
RealMatrix M = MatrixUtils.createRealMatrix(n, m);
RealVector mean = MatrixUtils.createRealVector(meanX);
int i = 0;
for (double[] x : X) {
RealVector xi = MatrixUtils.createRealVector(x).subtract(mean);
M.setColumnVector(i, xi);
i++;
}
return M;
}
示例10: main
import org.apache.commons.math3.linear.RealMatrix; //導入依賴的package包/類
public static void main(String[] args) {
// test wishart
double[][] s = {{2.0,1.0,0.0},{1.0,2.0,1.0},{0.0,1.0,2.0}};
RealMatrix S = new Array2DRowRealMatrix(s);
Cholesky C = new Cholesky(S);
double df = 2.4;
RealMatrix sum = new Array2DRowRealMatrix(3,3);
for (int i=0; i<100000; i++) {
RealMatrix sample = generator.nextWishart(df, C);
sum = sum.add(sample);
}
sum = sum.scalarMultiply(1.0/100000.0);
System.out.println(sum.getRowVector(0));
System.out.println(sum.getRowVector(1));
System.out.println(sum.getRowVector(2));
}
示例11: MixModel
import org.apache.commons.math3.linear.RealMatrix; //導入依賴的package包/類
public MixModel(MethyModel tumor, MethyModel normal, RealVector thetas, int nBetas, int MYTHREADS) throws InterruptedException {
int nFeatures=tumor.getNaRatio().getDimension();
this.nBetas = nBetas;
RealVector betas = new ArrayRealVector(nBetas);
for (int i=0; i<nBetas; i++) {
betas.setEntry(i,i/(nBetas-1.0));
}
mixDens = new RealMatrix[nFeatures];
ExecutorService executor = Executors.newFixedThreadPool(MYTHREADS);
for(int i = 0; i < nFeatures; i++) {
double tumorAlpha = tumor.getAlpha().getEntry(i);
double tumorBeta = tumor.getBeta().getEntry(i);
BetaDistribution tumorDist = new BetaDistribution(tumorAlpha,tumorBeta);
double normalAlpha = normal.getAlpha().getEntry(i);
double normalBeta = normal.getBeta().getEntry(i);
BetaDistribution normalDist = new BetaDistribution(normalAlpha,normalBeta);
Runnable worker = new CalMixDens(tumorDist,normalDist,thetas,betas,nPoints,i,mixDens);
executor.execute(worker);
}
executor.shutdown();
while (!executor.isTerminated()) {
Thread.sleep(10000);
}
}
示例12: selectFeature
import org.apache.commons.math3.linear.RealMatrix; //導入依賴的package包/類
public MixModel selectFeature(boolean[] selectedFeatures) {
MixModel newModel = new MixModel();
int nSelectedFeature = 0;
for (boolean select:selectedFeatures) {
if (select) {nSelectedFeature++;}
}
RealMatrix[] newMixDens = new RealMatrix[nSelectedFeature];
int j = 0;
for(int i=0; i<selectedFeatures.length; i++) {
if (selectedFeatures[i]) {
newMixDens[j] = this.mixDens[i];
j++;
}
}
newModel.setMixDens(newMixDens);
return newModel;
}
示例13: correlation2Distance
import org.apache.commons.math3.linear.RealMatrix; //導入依賴的package包/類
public static RealMatrix correlation2Distance(RealMatrix rMat) {
// Copy to retain Dimensions
RealMatrix dMat = rMat.copy();
for (int row = 0; row < rMat.getRowDimension(); row++) {
for (int col = 0; col < rMat.getColumnDimension(); col++) {
double r = rMat.getEntry(row, col);
//Apply cosine theorem:
//https://stats.stackexchange.com/questions/165194/using-correlation-as-distance-metric-for-hierarchical-clustering
double d = Math.sqrt(2*(1-r));
dMat.setEntry(row, col, d);
}
}
return dMat;
}
示例14: testCorrelation
import org.apache.commons.math3.linear.RealMatrix; //導入依賴的package包/類
@Test
public void testCorrelation() throws Exception {
TreeParser parser = new TreeParser();
parser.parseTree("./res/nodes.dmp", "./res/names.dmp");
TaxonId2CountCSVParser csvParser = new TaxonId2CountCSVParser(parser.getTaxonTree());
ArrayList<Sample> samples = new ArrayList<>();
samples.addAll(csvParser.parse("./res/testFiles/megan_examples/core1_activelayer_day2-ID2Count.txt"));
samples.addAll(csvParser.parse("./res/testFiles/megan_examples/core1_activelayer_day7-ID2Count.txt"));
samples.addAll(csvParser.parse("./res/testFiles/megan_examples/core1_activelayer_frozen-ID2Count.txt"));
RealMatrix correlationMatrix = SampleComparison.getCorrelationMatrixOfSamples();
System.out.println("Correlation Matrix:");
printMatrix(correlationMatrix);
System.out.println();
RealMatrix correlationPValues = SampleComparison.getCorrelationPValuesOfSamples();
System.out.println("P-Value matrix:");
printMatrix(correlationPValues);
}
示例15: getWhiteningTransformation
import org.apache.commons.math3.linear.RealMatrix; //導入依賴的package包/類
/**
* Returns the 'root' (U) of the inverse covariance matrix S^{-1},
* such that S^{-1} = U^T . U
* This matrix can be used to pre-transform the original sample
* vectors X (by X → U . X) to a space where distance measurement (in the Mahalanobis
* sense) can be calculated with the usual Euclidean norm.
* The matrix U is invertible in case the reverse mapping is required.
*
* @return The matrix for pre-transforming the original sample vectors.
*/
public double[][] getWhiteningTransformation() {
IJ.log("in whitening");
double relativeSymmetryThreshold = 1.0E-6; // CholeskyDecomposition.DEFAULT_RELATIVE_SYMMETRY_THRESHOLD == 1.0E-15; too small!
double absolutePositivityThreshold = 1.0E-10; // CholeskyDecomposition.DEFAULT_ABSOLUTE_POSITIVITY_THRESHOLD == 1.0E-10;
CholeskyDecomposition cd =
new CholeskyDecomposition(MatrixUtils.createRealMatrix(iCov),
relativeSymmetryThreshold, absolutePositivityThreshold);
RealMatrix U = cd.getLT();
return U.getData();
}