當前位置: 首頁>>代碼示例>>Java>>正文


Java RealMatrix.getEntry方法代碼示例

本文整理匯總了Java中org.apache.commons.math3.linear.RealMatrix.getEntry方法的典型用法代碼示例。如果您正苦於以下問題:Java RealMatrix.getEntry方法的具體用法?Java RealMatrix.getEntry怎麽用?Java RealMatrix.getEntry使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在org.apache.commons.math3.linear.RealMatrix的用法示例。


在下文中一共展示了RealMatrix.getEntry方法的13個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。

示例1: concatHorizontally

import org.apache.commons.math3.linear.RealMatrix; //導入方法依賴的package包/類
public static RealMatrix concatHorizontally(final RealMatrix left,
        final RealMatrix right) {
    if (left.getRowDimension() != right.getRowDimension()) {
        throw new IllegalArgumentException(
                "The matrices must have the same row dimension!");
    }

    final double[][] result =
            new double[left.getRowDimension()][left.getColumnDimension()
                    + right.getColumnDimension()];

    final int lc = left.getColumnDimension();

    for (int r = 0; r < left.getRowDimension(); r++) {
        for (int c = 0; c < left.getColumnDimension(); c++) {
            result[r][c] = left.getEntry(r, c);
        }
        for (int c = 0; c < right.getColumnDimension(); c++) {
            result[r][lc + c] = right.getEntry(r, c);
        }
    }

    return MatrixUtils.createRealMatrix(result);
}
 
開發者ID:knime,項目名稱:knime-activelearning,代碼行數:25,代碼來源:MatrixFunctions.java

示例2: concatVertically

import org.apache.commons.math3.linear.RealMatrix; //導入方法依賴的package包/類
public static RealMatrix concatVertically(final RealMatrix top,
        final RealMatrix bottom) {
    if (top.getColumnDimension() != bottom.getColumnDimension()) {
        throw new IllegalArgumentException(
                "The matrices must have the same column dimension!");
    }

    final double[][] result = new double[top.getRowDimension()
            + bottom.getRowDimension()][top.getColumnDimension()];

    final int tr = top.getRowDimension();

    for (int c = 0; c < top.getColumnDimension(); c++) {
        for (int r = 0; r < top.getRowDimension(); r++) {
            result[r][c] = top.getEntry(r, c);
        }
        for (int r = 0; r < bottom.getRowDimension(); r++) {
            result[tr + r][c] = bottom.getEntry(r, c);
        }
    }

    return MatrixUtils.createRealMatrix(result);
}
 
開發者ID:knime,項目名稱:knime-activelearning,代碼行數:24,代碼來源:MatrixFunctions.java

示例3: correlation2Distance

import org.apache.commons.math3.linear.RealMatrix; //導入方法依賴的package包/類
public static RealMatrix correlation2Distance(RealMatrix rMat) {

        // Copy to retain Dimensions
        RealMatrix dMat = rMat.copy();

        for (int row = 0; row < rMat.getRowDimension(); row++) {
            for (int col = 0; col < rMat.getColumnDimension(); col++) {
                double r = rMat.getEntry(row, col);

                //Apply cosine theorem:
                //https://stats.stackexchange.com/questions/165194/using-correlation-as-distance-metric-for-hierarchical-clustering
                double d = Math.sqrt(2*(1-r));
                dMat.setEntry(row, col, d);
            }
        }

        return dMat;
    }
 
開發者ID:jmueller95,項目名稱:CORNETTO,代碼行數:19,代碼來源:AnalysisData.java

示例4: testRealMatrixUpdates

import org.apache.commons.math3.linear.RealMatrix; //導入方法依賴的package包/類
@Test()
public void testRealMatrixUpdates() {
    final DataFrame<String,String> frame = TestDataFrames.random(double.class, 100, 100);
    final RealMatrix matrix = frame.export().asApacheMatrix();
    Assert.assertEquals(frame.rowCount(), matrix.getRowDimension(), "Row count matches");
    Assert.assertEquals(frame.colCount(), matrix.getColumnDimension(), "Column count matches");
    for (int i=0; i<frame.rowCount(); ++i) {
        for (int j = 0; j<frame.colCount(); ++j) {
            matrix.setEntry(i, j, Math.random());
        }
    }
    for (int i=0; i<frame.rowCount(); ++i) {
        for (int j = 0; j<frame.colCount(); ++j) {
            final double v1 = frame.data().getDouble(i, j);
            final double v2 = matrix.getEntry(i, j);
            Assert.assertEquals(v1, v2, "Values match at " + i + "," + j);
        }
    }
}
 
開發者ID:zavtech,項目名稱:morpheus-core,代碼行數:20,代碼來源:ExportTests.java

示例5: printX

import org.apache.commons.math3.linear.RealMatrix; //導入方法依賴的package包/類
@SuppressWarnings("unused")
private void printX(RealMatrix x, int iteration) {
    for (int i = 0; i < x.getRowDimension(); i++) {
        double value = x.getEntry(i, 0);
        System.out.print(value);
        if ( i < x.getRowDimension() - 1 ){
            System.out.print(',');
        }
    }
    System.out.print('\n');
}
 
開發者ID:hpiasg,項目名稱:asgdrivestrength,代碼行數:12,代碼來源:EqualDelayMatrixOptimizer.java

示例6: traceDot

import org.apache.commons.math3.linear.RealMatrix; //導入方法依賴的package包/類
double traceDot(RealMatrix A) {
  int d = meanMean.getDimension();
  double result = 0.0;
  for (int i=0; i<d; i++) {
    for (int j=0; j<d; j++) {
      result += A.getEntry(i, j)*precisionInvScale.getEntry(i, j);
    }
  }
  return result;
}
 
開發者ID:BigBayes,項目名稱:BNPMix.java,代碼行數:11,代碼來源:MVNormalWishartIndependent.java

示例7: computeBeta

import org.apache.commons.math3.linear.RealMatrix; //導入方法依賴的package包/類
/**
 *
 * @param y     the response vector
 * @param x     the design matrix
 */
private RealMatrix computeBeta(RealVector y, RealMatrix x) {
    if (solver == Solver.QR) {
        return computeBetaQR(y, x);
    } else {
        final int n = x.getRowDimension();
        final int p = x.getColumnDimension();
        final int offset = hasIntercept() ? 1 : 0;
        final RealMatrix xT = x.transpose();
        final RealMatrix xTxInv = new LUDecomposition(xT.multiply(x)).getSolver().getInverse();
        final RealVector betaVector = xTxInv.multiply(xT).operate(y);
        final RealVector residuals = y.subtract(x.operate(betaVector));
        this.rss = residuals.dotProduct(residuals);
        this.errorVariance = rss / (n - p);
        this.stdError = Math.sqrt(errorVariance);
        this.residuals = createResidualsFrame(residuals);
        final RealMatrix covMatrix = xTxInv.scalarMultiply(errorVariance);
        final RealMatrix result = new Array2DRowRealMatrix(p, 2);
        if (hasIntercept()) {
            result.setEntry(0, 0, betaVector.getEntry(0));      //Intercept coefficient
            result.setEntry(0, 1, covMatrix.getEntry(0, 0));    //Intercept variance
        }
        for (int i = 0; i < getRegressors().size(); i++) {
            final int index = i + offset;
            final double variance = covMatrix.getEntry(index, index);
            result.setEntry(index, 1, variance);
            result.setEntry(index, 0, betaVector.getEntry(index));
        }
        return result;
    }
}
 
開發者ID:zavtech,項目名稱:morpheus-core,代碼行數:36,代碼來源:XDataFrameLeastSquares.java

示例8: computeBetaQR

import org.apache.commons.math3.linear.RealMatrix; //導入方法依賴的package包/類
/**
 * Computes model parameters and parameter variance using a QR decomposition of the X matrix
 * @param y     the response vector
 * @param x     the design matrix
 */
private RealMatrix computeBetaQR(RealVector y, RealMatrix x) {
    final int n = x.getRowDimension();
    final int p = x.getColumnDimension();
    final int offset = hasIntercept() ? 1 : 0;
    final QRDecomposition decomposition = new QRDecomposition(x, threshold);
    final RealVector betaVector = decomposition.getSolver().solve(y);
    final RealVector residuals = y.subtract(x.operate(betaVector));
    this.rss = residuals.dotProduct(residuals);
    this.errorVariance = rss / (n - p);
    this.stdError = Math.sqrt(errorVariance);
    this.residuals = createResidualsFrame(residuals);
    final RealMatrix rAug = decomposition.getR().getSubMatrix(0, p - 1, 0, p - 1);
    final RealMatrix rInv = new LUDecomposition(rAug).getSolver().getInverse();
    final RealMatrix covMatrix = rInv.multiply(rInv.transpose()).scalarMultiply(errorVariance);
    final RealMatrix result = new Array2DRowRealMatrix(p, 2);
    if (hasIntercept()) {
        result.setEntry(0, 0, betaVector.getEntry(0));      //Intercept coefficient
        result.setEntry(0, 1, covMatrix.getEntry(0, 0));    //Intercept variance
    }
    for (int i = 0; i < getRegressors().size(); i++) {
        final int index = i + offset;
        final double variance = covMatrix.getEntry(index, index);
        result.setEntry(index, 1, variance);
        result.setEntry(index, 0, betaVector.getEntry(index));
    }
    return result;
}
 
開發者ID:zavtech,項目名稱:morpheus-core,代碼行數:33,代碼來源:XDataFrameLeastSquares.java

示例9: testRealMatrixRead

import org.apache.commons.math3.linear.RealMatrix; //導入方法依賴的package包/類
@Test()
public void testRealMatrixRead() {
    final DataFrame<String,String> frame = TestDataFrames.random(double.class, 100, 100);
    final RealMatrix matrix = frame.export().asApacheMatrix();
    Assert.assertEquals(frame.rowCount(), matrix.getRowDimension(), "Row count matches");
    Assert.assertEquals(frame.colCount(), matrix.getColumnDimension(), "Column count matches");
    for (int i=0; i<frame.rowCount(); ++i) {
        for (int j = 0; j<frame.colCount(); ++j) {
            final double v1 = frame.data().getDouble(i, j);
            final double v2 = matrix.getEntry(i, j);
            Assert.assertEquals(v1, v2, "Values match at " + i + "," + j);
        }
    }
}
 
開發者ID:zavtech,項目名稱:morpheus-core,代碼行數:15,代碼來源:ExportTests.java

示例10: testRealMatrixReadAfterModify

import org.apache.commons.math3.linear.RealMatrix; //導入方法依賴的package包/類
@Test()
public void testRealMatrixReadAfterModify() {
    final DataFrame<String,String> frame = TestDataFrames.random(double.class, 100, 100);
    final RealMatrix matrix = frame.export().asApacheMatrix();
    Assert.assertEquals(frame.rowCount(), matrix.getRowDimension(), "Row count matches");
    Assert.assertEquals(frame.colCount(), matrix.getColumnDimension(), "Column count matches");
    frame.applyDoubles(v -> Math.random());
    for (int i=0; i<frame.rowCount(); ++i) {
        for (int j = 0; j<frame.colCount(); ++j) {
            final double v1 = frame.data().getDouble(i, j);
            final double v2 = matrix.getEntry(i, j);
            Assert.assertEquals(v1, v2, "Values match at " + i + "," + j);
        }
    }
}
 
開發者ID:zavtech,項目名稱:morpheus-core,代碼行數:16,代碼來源:ExportTests.java

示例11: testRealMatrixCopy

import org.apache.commons.math3.linear.RealMatrix; //導入方法依賴的package包/類
@Test()
public void testRealMatrixCopy() {
    final DataFrame<String,String> frame = TestDataFrames.random(double.class, 100, 100);
    final RealMatrix matrix = frame.export().asApacheMatrix().copy();
    frame.applyDoubles(v -> Math.random() * 10);
    for (int i=0; i<frame.rowCount(); ++i) {
        for (int j = 0; j<frame.colCount(); ++j) {
            final double v1 = frame.data().getDouble(i, j);
            final double v2 = matrix.getEntry(i, j);
            Assert.assertTrue(v1 != v2, "Values do not match at " + i + "," + j);
        }
    }
}
 
開發者ID:zavtech,項目名稱:morpheus-core,代碼行數:14,代碼來源:ExportTests.java

示例12: weightedLinearCorr

import org.apache.commons.math3.linear.RealMatrix; //導入方法依賴的package包/類
/**
 *
 * @param y
 * @param x
 * @param sigmaRhoY
 * @return
 */
public static WeightedLinearCorrResults weightedLinearCorr(double[] y, double[] x, double[][] sigmaRhoY) {
    WeightedLinearCorrResults weightedLinearCorrResults = new WeightedLinearCorrResults();

    RealMatrix omega = new BlockRealMatrix(convertCorrelationsToCovariances(sigmaRhoY));
    RealMatrix invOmega = MatrixUtils.inverse(omega);
    int n = y.length;

    double mX = 0;
    double pX = 0;
    double pY = 0;
    double pXY = 0;
    double w = 0;

    for (int i = 0; i < n; i++) {
        for (int j = 0; j < n; j++) {
            double invOm = invOmega.getEntry(i, j);
            w += invOm;
            pX += (invOm * (x[i] + x[j]));
            pY += (invOm * (y[i] + y[j]));
            pXY += (invOm * (((x[i] * y[j]) + (x[j] * y[i]))));
            mX += (invOm * x[i] * x[j]);
        }
    }       
    double slope = ((2 * pXY * w) - (pX * pY)) / ((4 * mX * w) - (pX * pX));
    double intercept = (pY - (slope * pX)) / (2 * w);

    RealMatrix fischer = new BlockRealMatrix(new double[][]{{mX, pX / 2.0}, {pX / 2.0, w}});
    RealMatrix fischerInv = MatrixUtils.inverse(fischer);

    double slopeSig = Math.sqrt(fischerInv.getEntry(0, 0));
    double interceptSig = Math.sqrt(fischerInv.getEntry(1, 1));
    double slopeInterceptCov = fischerInv.getEntry(0, 1);
    
    RealMatrix resid = new BlockRealMatrix(n, 1);
    for (int i = 0; i < n; i++) {
        resid.setEntry(i, 0, y[i] - (slope * x[i]) - intercept);
    }

    RealMatrix residT = resid.transpose();
    RealMatrix mM = residT.multiply(invOmega).multiply(resid);

    double sumSqWtdResids = mM.getEntry(0, 0);
    double mswd = sumSqWtdResids / (n - 2);

    // http://commons.apache.org/proper/commons-math/apidocs/org/apache/commons/math3/distribution/FDistribution.html
    FDistribution fdist = new org.apache.commons.math3.distribution.FDistribution((n - 2), 1E9);
    double prob = 1.0 - fdist.cumulativeProbability(mswd);
    
    weightedLinearCorrResults.setBad(false);
    weightedLinearCorrResults.setSlope(slope);
    weightedLinearCorrResults.setIntercept(intercept);
    weightedLinearCorrResults.setSlopeSig(slopeSig);
    weightedLinearCorrResults.setInterceptSig(interceptSig);
    weightedLinearCorrResults.setSlopeInterceptCov(slopeInterceptCov);
    weightedLinearCorrResults.setMswd(mswd);
    weightedLinearCorrResults.setProb(prob);

    return weightedLinearCorrResults;
}
 
開發者ID:CIRDLES,項目名稱:Squid,代碼行數:67,代碼來源:WeightedMeanCalculators.java

示例13: wtdAvCorr

import org.apache.commons.math3.linear.RealMatrix; //導入方法依賴的package包/類
/**
 *
 * @param values
 * @param varCov
 * @return
 */
public static WtdAvCorrResults wtdAvCorr(double[] values, double[][] varCov) {
    // assume varCov is variance-covariance matrix (i.e. SigRho = false)

    WtdAvCorrResults results = new WtdAvCorrResults();

    int n = varCov.length;
    RealMatrix omegaInv = new BlockRealMatrix(varCov);
    RealMatrix omega = MatrixUtils.inverse(omegaInv);

    double numer = 0.0;
    double denom = 0.0;

    for (int i = 0; i < n; i++) {
        for (int j = 0; j < n; j++) {
            numer += (values[i] + values[j]) * omega.getEntry(i, j);
            denom += omega.getEntry(i, j);
        }
    }

    // test denom
    if (denom > 0.0) {
        double meanVal = numer / denom / 2.0;
        double meanValSigma = Math.sqrt(1.0 / denom);

        double[][] unwtdResidsArray = new double[n][1];
        for (int i = 0; i < n; i++) {
            unwtdResidsArray[i][0] = values[i] - meanVal;
        }

        RealMatrix unwtdResids = new BlockRealMatrix(unwtdResidsArray);
        RealMatrix transUnwtdResids = unwtdResids.transpose();
        RealMatrix product = transUnwtdResids.multiply(omega);
        RealMatrix sumWtdResids = product.multiply(unwtdResids);

        double mswd = 0.0;
        double prob = 0.0;
        if (n > 1) {
            mswd = sumWtdResids.getEntry(0, 0) / (n - 1);

            // http://commons.apache.org/proper/commons-math/apidocs/org/apache/commons/math3/distribution/FDistribution.html
            FDistribution fdist = new org.apache.commons.math3.distribution.FDistribution((n - 1), 1E9);
            prob = 1.0 - fdist.cumulativeProbability(mswd);
        }

        results.setBad(false);
        results.setMeanVal(meanVal);
        results.setSigmaMeanVal(meanValSigma);
        results.setMswd(mswd);
        results.setProb(prob);
    }

    return results;

}
 
開發者ID:CIRDLES,項目名稱:Squid,代碼行數:61,代碼來源:WeightedMeanCalculators.java


注:本文中的org.apache.commons.math3.linear.RealMatrix.getEntry方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。