本文整理匯總了Java中org.apache.commons.math3.linear.RealMatrix.getColumnDimension方法的典型用法代碼示例。如果您正苦於以下問題:Java RealMatrix.getColumnDimension方法的具體用法?Java RealMatrix.getColumnDimension怎麽用?Java RealMatrix.getColumnDimension使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類org.apache.commons.math3.linear.RealMatrix
的用法示例。
在下文中一共展示了RealMatrix.getColumnDimension方法的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。
示例1: multiplyElementWise
import org.apache.commons.math3.linear.RealMatrix; //導入方法依賴的package包/類
public static RealMatrix multiplyElementWise(final RealMatrix matrix1,
final RealMatrix matrix2) {
if (matrix1.getRowDimension() != matrix2.getRowDimension() || matrix1
.getColumnDimension() != matrix2.getColumnDimension()) {
throw new IllegalArgumentException(
"The matrices must be of the same dimensions!");
}
final RealMatrix result = matrix1.createMatrix(
matrix1.getRowDimension(), matrix1.getColumnDimension());
for (int r = 0; r < matrix1.getRowDimension(); r++) {
for (int c = 0; c < matrix1.getColumnDimension(); c++) {
result.setEntry(r, c,
matrix1.getEntry(r, c) * matrix2.getEntry(r, c));
}
}
return result;
}
示例2: concatHorizontally
import org.apache.commons.math3.linear.RealMatrix; //導入方法依賴的package包/類
public static RealMatrix concatHorizontally(final RealMatrix left,
final RealMatrix right) {
if (left.getRowDimension() != right.getRowDimension()) {
throw new IllegalArgumentException(
"The matrices must have the same row dimension!");
}
final double[][] result =
new double[left.getRowDimension()][left.getColumnDimension()
+ right.getColumnDimension()];
final int lc = left.getColumnDimension();
for (int r = 0; r < left.getRowDimension(); r++) {
for (int c = 0; c < left.getColumnDimension(); c++) {
result[r][c] = left.getEntry(r, c);
}
for (int c = 0; c < right.getColumnDimension(); c++) {
result[r][lc + c] = right.getEntry(r, c);
}
}
return MatrixUtils.createRealMatrix(result);
}
示例3: concatVertically
import org.apache.commons.math3.linear.RealMatrix; //導入方法依賴的package包/類
public static RealMatrix concatVertically(final RealMatrix top,
final RealMatrix bottom) {
if (top.getColumnDimension() != bottom.getColumnDimension()) {
throw new IllegalArgumentException(
"The matrices must have the same column dimension!");
}
final double[][] result = new double[top.getRowDimension()
+ bottom.getRowDimension()][top.getColumnDimension()];
final int tr = top.getRowDimension();
for (int c = 0; c < top.getColumnDimension(); c++) {
for (int r = 0; r < top.getRowDimension(); r++) {
result[r][c] = top.getEntry(r, c);
}
for (int r = 0; r < bottom.getRowDimension(); r++) {
result[tr + r][c] = bottom.getEntry(r, c);
}
}
return MatrixUtils.createRealMatrix(result);
}
示例4: correlation2Distance
import org.apache.commons.math3.linear.RealMatrix; //導入方法依賴的package包/類
public static RealMatrix correlation2Distance(RealMatrix rMat) {
// Copy to retain Dimensions
RealMatrix dMat = rMat.copy();
for (int row = 0; row < rMat.getRowDimension(); row++) {
for (int col = 0; col < rMat.getColumnDimension(); col++) {
double r = rMat.getEntry(row, col);
//Apply cosine theorem:
//https://stats.stackexchange.com/questions/165194/using-correlation-as-distance-metric-for-hierarchical-clustering
double d = Math.sqrt(2*(1-r));
dMat.setEntry(row, col, d);
}
}
return dMat;
}
示例5: testSqrtMatrix
import org.apache.commons.math3.linear.RealMatrix; //導入方法依賴的package包/類
@Test
public void testSqrtMatrix() {
final RealMatrix result = MatrixFunctions.sqrt(matrixA);
for (int r = 0; r < result.getRowDimension(); r++) {
for (int c = 0; c < result.getColumnDimension(); c++) {
assertEquals(Math.sqrt(matrixA.getEntry(r, c)),
result.getEntry(r, c), 0);
}
}
}
示例6: testPow
import org.apache.commons.math3.linear.RealMatrix; //導入方法依賴的package包/類
@Test
public void testPow() {
final RealMatrix result = MatrixFunctions.pow(matrixA, 2);
for (int r = 0; r < result.getRowDimension(); r++) {
for (int c = 0; c < result.getColumnDimension(); c++) {
assertEquals(Math.pow(matrixA.getEntry(r, c), 2),
result.getEntry(r, c), 0);
}
}
}
示例7: ThreadController
import org.apache.commons.math3.linear.RealMatrix; //導入方法依賴的package包/類
public ThreadController(final ExecutionContext exec,
final RealMatrix globalKernelMatrix,
final RealMatrix trainingKernelMatrix, final String[] labels,
final int numNeighbors, final boolean normalize) {
m_exec = exec;
m_globalKernelMatrix = globalKernelMatrix;
m_trainingKernelMatrix = trainingKernelMatrix;
m_labels = labels;
m_numNeighbors = numNeighbors;
m_normalize = normalize;
m_noveltyScores = new double[globalKernelMatrix.getColumnDimension()];
}
示例8: sqrt
import org.apache.commons.math3.linear.RealMatrix; //導入方法依賴的package包/類
public static RealMatrix sqrt(final RealMatrix matrix) {
final double[][] data = matrix.getData();
for (int r = 0; r < matrix.getRowDimension(); r++) {
for (int c = 0; c < matrix.getColumnDimension(); c++) {
data[r][c] = Math.sqrt(data[r][c]);
}
}
return MatrixUtils.createRealMatrix(data);
}
示例9: pow
import org.apache.commons.math3.linear.RealMatrix; //導入方法依賴的package包/類
public static RealMatrix pow(final RealMatrix matrix, final double power) {
final RealMatrix result = matrix.createMatrix(matrix.getRowDimension(),
matrix.getColumnDimension());
for (int r = 0; r < result.getRowDimension(); r++) {
for (int c = 0; c < result.getColumnDimension(); c++) {
result.setEntry(r, c, Math.pow(matrix.getEntry(r, c), power));
}
}
return result;
}
示例10: CancerPrediction
import org.apache.commons.math3.linear.RealMatrix; //導入方法依賴的package包/類
public CancerPrediction(RealMatrix dens, RealVector thetas, boolean cancerPos) {
int nTheta = dens.getColumnDimension();
int nType = dens.getRowDimension();
thetaPreds = new double[nType];
maxDens = new Double[nType];
double[] baseDens = dens.getColumn(0); // the likelihoods if the sample is normal
for (int i=0; i<nType; i++) {
RealVector rowDens;
if (cancerPos) {
rowDens = dens.getRowVector(i).getSubVector(1,nTheta - 1);
thetaPreds[i] = thetaPred(rowDens, thetas.getSubVector(1,nTheta-1));
}
else {
rowDens = dens.getRowVector(i);
thetaPreds[i] = thetaPred(rowDens, thetas);
}
maxDens[i] = rowDens.getMaxValue();
}
//sort type by maxDens-baseDens
typeRanks = new Integer[nType];
for(int i=0 ; i < nType; i++ ) typeRanks[i] = i;
Arrays.sort(typeRanks, (i1, i2) -> { // descending
return Double.compare(maxDens[i2]-baseDens[i2], maxDens[i1]-baseDens[i1]); // log scale
});
bestTheta = thetaPreds[typeRanks[0]];
bestDens = maxDens[typeRanks[0]];
bestRatio = bestDens-baseDens[typeRanks[0]]; // log scale
}
示例11: printMatrix
import org.apache.commons.math3.linear.RealMatrix; //導入方法依賴的package包/類
/**
* Helper method for printing a matrix to the console
*
* @param matrix
*/
public static void printMatrix(RealMatrix matrix) {
for (int rowIndex = 0; rowIndex < matrix.getRowDimension(); rowIndex++) {
for (int colIndex = 0; colIndex < matrix.getColumnDimension(); colIndex++) {
System.out.printf("%.3f", matrix.getEntry(rowIndex, colIndex));
System.out.print("\t");
}
System.out.println();
}
}
示例12: printMatrix
import org.apache.commons.math3.linear.RealMatrix; //導入方法依賴的package包/類
/**
* Helper method for printing a matrix
*
* @param matrix
*/
public void printMatrix(RealMatrix matrix) {
for (int rowIndex = 0; rowIndex < matrix.getRowDimension(); rowIndex++) {
double[] currentRow = matrix.getRow(rowIndex);
for (int colIndex = 0; colIndex < matrix.getColumnDimension(); colIndex++) {
System.out.printf("%.3f", matrix.getEntry(rowIndex, colIndex));
System.out.print("\t");
}
System.out.println();
}
}
示例13: computeBeta
import org.apache.commons.math3.linear.RealMatrix; //導入方法依賴的package包/類
/**
*
* @param y the response vector
* @param x the design matrix
*/
private RealMatrix computeBeta(RealVector y, RealMatrix x) {
if (solver == Solver.QR) {
return computeBetaQR(y, x);
} else {
final int n = x.getRowDimension();
final int p = x.getColumnDimension();
final int offset = hasIntercept() ? 1 : 0;
final RealMatrix xT = x.transpose();
final RealMatrix xTxInv = new LUDecomposition(xT.multiply(x)).getSolver().getInverse();
final RealVector betaVector = xTxInv.multiply(xT).operate(y);
final RealVector residuals = y.subtract(x.operate(betaVector));
this.rss = residuals.dotProduct(residuals);
this.errorVariance = rss / (n - p);
this.stdError = Math.sqrt(errorVariance);
this.residuals = createResidualsFrame(residuals);
final RealMatrix covMatrix = xTxInv.scalarMultiply(errorVariance);
final RealMatrix result = new Array2DRowRealMatrix(p, 2);
if (hasIntercept()) {
result.setEntry(0, 0, betaVector.getEntry(0)); //Intercept coefficient
result.setEntry(0, 1, covMatrix.getEntry(0, 0)); //Intercept variance
}
for (int i = 0; i < getRegressors().size(); i++) {
final int index = i + offset;
final double variance = covMatrix.getEntry(index, index);
result.setEntry(index, 1, variance);
result.setEntry(index, 0, betaVector.getEntry(index));
}
return result;
}
}
示例14: computeBetaQR
import org.apache.commons.math3.linear.RealMatrix; //導入方法依賴的package包/類
/**
* Computes model parameters and parameter variance using a QR decomposition of the X matrix
* @param y the response vector
* @param x the design matrix
*/
private RealMatrix computeBetaQR(RealVector y, RealMatrix x) {
final int n = x.getRowDimension();
final int p = x.getColumnDimension();
final int offset = hasIntercept() ? 1 : 0;
final QRDecomposition decomposition = new QRDecomposition(x, threshold);
final RealVector betaVector = decomposition.getSolver().solve(y);
final RealVector residuals = y.subtract(x.operate(betaVector));
this.rss = residuals.dotProduct(residuals);
this.errorVariance = rss / (n - p);
this.stdError = Math.sqrt(errorVariance);
this.residuals = createResidualsFrame(residuals);
final RealMatrix rAug = decomposition.getR().getSubMatrix(0, p - 1, 0, p - 1);
final RealMatrix rInv = new LUDecomposition(rAug).getSolver().getInverse();
final RealMatrix covMatrix = rInv.multiply(rInv.transpose()).scalarMultiply(errorVariance);
final RealMatrix result = new Array2DRowRealMatrix(p, 2);
if (hasIntercept()) {
result.setEntry(0, 0, betaVector.getEntry(0)); //Intercept coefficient
result.setEntry(0, 1, covMatrix.getEntry(0, 0)); //Intercept variance
}
for (int i = 0; i < getRegressors().size(); i++) {
final int index = i + offset;
final double variance = covMatrix.getEntry(index, index);
result.setEntry(index, 1, variance);
result.setEntry(index, 0, betaVector.getEntry(index));
}
return result;
}