當前位置: 首頁>>代碼示例>>Golang>>正文


Golang Float.Neg方法代碼示例

本文整理匯總了Golang中math/big.Float.Neg方法的典型用法代碼示例。如果您正苦於以下問題:Golang Float.Neg方法的具體用法?Golang Float.Neg怎麽用?Golang Float.Neg使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在math/big.Float的用法示例。


在下文中一共展示了Float.Neg方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Golang代碼示例。

示例1: quo

func quo(x, y *complexFloat) *complexFloat {
	z := newComplexFloat()
	denominator := new(big.Float).SetPrec(prec)
	c2 := new(big.Float).SetPrec(prec)
	d2 := new(big.Float).SetPrec(prec)
	c2.Mul(y.r, y.r)
	d2.Mul(y.i, y.i)
	denominator.Add(c2, d2)

	if denominator.Cmp(zero) == 0 || denominator.IsInf() {
		return newComplexFloat()
	}

	ac := new(big.Float).SetPrec(prec)
	bd := new(big.Float).SetPrec(prec)
	ac.Mul(x.r, y.r)
	bd.Mul(x.i, y.i)

	bc := new(big.Float).SetPrec(prec)
	ad := new(big.Float).SetPrec(prec)
	bc.Mul(x.i, y.r)
	ad.Mul(x.r, y.i)

	z.r.Add(ac, bd)
	z.r.Quo(z.r, denominator)

	z.i.Add(bc, ad.Neg(ad))
	z.i.Quo(z.i, denominator)

	return z
}
開發者ID:ysohta,項目名稱:gopl-ex,代碼行數:31,代碼來源:complexfloat.go

示例2: sincos

// sincos iterates a sin or cos Taylor series.
func sincos(name string, c Context, index int, x *big.Float, z *big.Float, exp uint64, factorial *big.Float) *big.Float {
	term := newFloat(c).Set(floatOne)
	for j := 0; j < index; j++ {
		term.Mul(term, x)
	}
	xN := newFloat(c).Set(term)
	x2 := newFloat(c).Mul(x, x)
	n := newFloat(c)

	for loop := newLoop(c.Config(), name, x, 4); ; {
		// Invariant: factorial holds -1ⁿ*exponent!.
		factorial.Neg(factorial)
		term.Quo(term, factorial)
		z.Add(z, term)

		if loop.done(z) {
			break
		}
		// Advance x**index (multiply by x²).
		term.Mul(xN, x2)
		xN.Set(term)
		// Advance factorial.
		factorial.Mul(factorial, n.SetUint64(exp+1))
		factorial.Mul(factorial, n.SetUint64(exp+2))
		exp += 2
	}
	return z
}
開發者ID:ghost-dog,項目名稱:ivy,代碼行數:29,代碼來源:sin.go

示例3: mul

func mul(x, y *complexFloat) *complexFloat {
	t1 := new(big.Float).SetPrec(prec)
	t2 := new(big.Float).SetPrec(prec)
	z := newComplexFloat()
	t1.Mul(x.r, y.r)
	t2.Mul(x.i, y.i)
	t2.Neg(t2)
	z.r.Add(t1, t2)

	t1.Mul(x.r, y.i)
	t2.Mul(x.i, y.r)
	z.i.Add(t1, t2)
	return z
}
開發者ID:ysohta,項目名稱:gopl-ex,代碼行數:14,代碼來源:complexfloat.go

示例4: floatSin

// floatSin computes sin(x) using argument reduction and a Taylor series.
func floatSin(c Context, x *big.Float) *big.Float {
	negate := false
	if x.Sign() < 0 {
		x.Neg(x)
		negate = true
	}
	twoPiReduce(c, x)

	// sin(x) = x - x³/3! + x⁵/5! - ...
	// First term to compute in loop will be -x³/3!
	factorial := newFloat(c).SetInt64(6)

	result := sincos("sin", c, 3, x, newFloat(c).Set(x), 3, factorial)

	if negate {
		result.Neg(result)
	}

	return result
}
開發者ID:ghost-dog,項目名稱:ivy,代碼行數:21,代碼來源:sin.go

示例5: Log

// Log returns a big.Float representation of the natural logarithm of
// z. Precision is the same as the one of the argument. The function
// panics if z is negative, returns -Inf when z = 0, and +Inf when z =
// +Inf
func Log(z *big.Float) *big.Float {

	// panic on negative z
	if z.Sign() == -1 {
		panic("Log: argument is negative")
	}

	// Log(0) = -Inf
	if z.Sign() == 0 {
		return big.NewFloat(math.Inf(-1)).SetPrec(z.Prec())
	}

	prec := z.Prec() + 64 // guard digits

	one := big.NewFloat(1).SetPrec(prec)
	two := big.NewFloat(2).SetPrec(prec)
	four := big.NewFloat(4).SetPrec(prec)

	// Log(1) = 0
	if z.Cmp(one) == 0 {
		return big.NewFloat(0).SetPrec(z.Prec())
	}

	// Log(+Inf) = +Inf
	if z.IsInf() {
		return big.NewFloat(math.Inf(+1)).SetPrec(z.Prec())
	}

	x := new(big.Float).SetPrec(prec)

	// if 0 < z < 1 we compute log(z) as -log(1/z)
	var neg bool
	if z.Cmp(one) < 0 {
		x.Quo(one, z)
		neg = true
	} else {
		x.Set(z)
	}

	// We scale up x until x >= 2**(prec/2), and then we'll be allowed
	// to use the AGM formula for Log(x).
	//
	// Double x until the condition is met, and keep track of the
	// number of doubling we did (needed to scale back later).

	lim := new(big.Float)
	lim.SetMantExp(two, int(prec/2))

	k := 0
	for x.Cmp(lim) < 0 {
		x.Mul(x, x)
		k++
	}

	// Compute the natural log of x using the fact that
	//     log(x) = π / (2 * AGM(1, 4/x))
	// if
	//     x >= 2**(prec/2),
	// where prec is the desired precision (in bits)
	pi := pi(prec)
	agm := agm(one, x.Quo(four, x)) // agm = AGM(1, 4/x)

	x.Quo(pi, x.Mul(two, agm)) // reuse x, we don't need it

	if neg {
		x.Neg(x)
	}

	// scale the result back multiplying by 2**-k
	// reuse lim to reduce allocations.
	x.Mul(x, lim.SetMantExp(one, -k))

	return x.SetPrec(z.Prec())
}
開發者ID:ALTree,項目名稱:floats,代碼行數:78,代碼來源:log.go

示例6: String

func (f BigFloat) String() string {
	var mant big.Float
	exp := f.Float.MantExp(&mant)
	positive := 1
	if exp < 0 {
		positive = 0
		exp = -exp
	}
	verb, prec := byte('g'), 12
	format := conf.Format()
	if format != "" {
		v, p, ok := conf.FloatFormat()
		if ok {
			verb, prec = v, p
		}
	}
	// Printing huge floats can be very slow using
	// big.Float's native methods; see issue #11068.
	// For example 1e5000000 takes a minute of CPU time just
	// to print. The code below is instantaneous, by rescaling
	// first. It is however less feature-complete.
	// (Big ints are problematic too, but if you print 1e50000000
	// as an integer you probably won't be surprised it's slow.)

	if fastFloatPrint && exp > 10000 {
		// We always use %g to print the fraction, and it will
		// never have an exponent, but if the format is %E we
		// need to use a capital E.
		eChar := 'e'
		if verb == 'E' || verb == 'G' {
			eChar = 'E'
		}
		fexp := newF().SetInt64(int64(exp))
		fexp.Mul(fexp, floatLog2)
		fexp.Quo(fexp, floatLog10)
		// We now have a floating-point base 10 exponent.
		// Break into the integer part and the fractional part.
		// The integer part is what we will show.
		// The 10**(fractional part) will be multiplied back in.
		iexp, _ := fexp.Int(nil)
		fraction := fexp.Sub(fexp, newF().SetInt(iexp))
		// Now compute 10**(fractional part).
		// Fraction is in base 10. Move it to base e.
		fraction.Mul(fraction, floatLog10)
		scale := exponential(fraction)
		if positive > 0 {
			mant.Mul(&mant, scale)
		} else {
			mant.Quo(&mant, scale)
		}
		ten := newF().SetInt64(10)
		i64exp := iexp.Int64()
		// For numbers not too far from one, print without the E notation.
		// Shouldn't happen (exp must be large to get here) but just
		// in case, we keep this around.
		if -4 <= i64exp && i64exp <= 11 {
			if i64exp > 0 {
				for i := 0; i < int(i64exp); i++ {
					mant.Mul(&mant, ten)
				}
			} else {
				for i := 0; i < int(-i64exp); i++ {
					mant.Quo(&mant, ten)
				}
			}
			return fmt.Sprintf("%g\n", &mant)
		} else {
			sign := ""
			if mant.Sign() < 0 {
				sign = "-"
				mant.Neg(&mant)
			}
			// If it has a leading zero, rescale.
			digits := mant.Text('g', prec)
			for digits[0] == '0' {
				mant.Mul(&mant, ten)
				if positive > 0 {
					i64exp--
				} else {
					i64exp++
				}
				digits = mant.Text('g', prec)
			}
			return fmt.Sprintf("%s%s%c%c%d", sign, digits, eChar, "-+"[positive], i64exp)
		}
	}
	return f.Float.Text(verb, prec)
}
開發者ID:zzn01,項目名稱:ivy,代碼行數:88,代碼來源:bigfloat.go

示例7: Run


//.........這裏部分代碼省略.........
	// For i := 1 to n:
	//     for j := i + 1 to n − 1:
	//         set Hij := 0
	//     endfor
	//     if i ≤ n − 1 then set Hii := s_(i+1)/s_i
	//     for j := 1 to i−1:
	//         set Hij := −y_i * y_j / (s_j * s_(j+1))
	//     endfor
	// endfor
	for i := 1; i <= n; i++ {
		for j := i + 1; j < n; j++ {
			H[i][j].SetInt64(0)
		}
		if i <= n-1 {
			if s[i].Sign() == 0 {
				// Precision probably exhausted
				return nil, ErrorPrecisionExhausted
			}
			// H[i][i] = (s[i+1] << prec) / s[i]
			H[i][i].Quo(&s[i+1], &s[i])
		}
		for j := 1; j < i; j++ {
			var sjj1 big.Float
			sjj1.Mul(&s[j], &s[j+1])
			if debug {
				fmt.Printf("sjj1 = %f\n", &sjj1)
			}
			if sjj1.Sign() == 0 {
				// Precision probably exhausted
				return nil, ErrorPrecisionExhausted
			}
			// H[i][j] = ((-y[i] * y[j]) << prec) / sjj1
			tmp0.Mul(&y[i], &y[j])
			tmp0.Neg(tmp0)
			H[i][j].Quo(tmp0, &sjj1)
		}
	}
	if debug {
		fmt.Println("Init Step 3")
		printMatrix("H", H)
	}
	// Init Step 4
	//
	// Perform full reduction on H, simultaneously updating y, A and B:
	//
	// For i := 2 to n:
	//     for j := i−1 to 1 step−1:
	//         t := nint(Hij/Hjj)
	//         y_j := y_j + t * y_i
	//         for k := 1 to j:
	//             Hik := Hik − t * Hjk
	//         endfor
	//         for k := 1 to n:
	//             Aik := Aik − t * Ajk
	//             Bkj := Bkj + t * Bki
	//         endfor
	//     endfor
	// endfor
	for i := 2; i <= n; i++ {
		for j := i - 1; j > 0; j-- {
			//t = floor(H[i][j]/H[j,j] + 0.5)
			var t big.Int
			var tFloat big.Float
			if H[j][j].Sign() == 0 {
				// Precision probably exhausted
				return nil, ErrorPrecisionExhausted
開發者ID:ncw,項目名稱:pslq,代碼行數:67,代碼來源:pslq.go


注:本文中的math/big.Float.Neg方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。