本文整理匯總了Golang中math/big.Float.Mul方法的典型用法代碼示例。如果您正苦於以下問題:Golang Float.Mul方法的具體用法?Golang Float.Mul怎麽用?Golang Float.Mul使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類math/big.Float
的用法示例。
在下文中一共展示了Float.Mul方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Golang代碼示例。
示例1: sincos
// sincos iterates a sin or cos Taylor series.
func sincos(name string, c Context, index int, x *big.Float, z *big.Float, exp uint64, factorial *big.Float) *big.Float {
term := newFloat(c).Set(floatOne)
for j := 0; j < index; j++ {
term.Mul(term, x)
}
xN := newFloat(c).Set(term)
x2 := newFloat(c).Mul(x, x)
n := newFloat(c)
for loop := newLoop(c.Config(), name, x, 4); ; {
// Invariant: factorial holds -1ⁿ*exponent!.
factorial.Neg(factorial)
term.Quo(term, factorial)
z.Add(z, term)
if loop.done(z) {
break
}
// Advance x**index (multiply by x²).
term.Mul(xN, x2)
xN.Set(term)
// Advance factorial.
factorial.Mul(factorial, n.SetUint64(exp+1))
factorial.Mul(factorial, n.SetUint64(exp+2))
exp += 2
}
return z
}
示例2: Sqrt
// Sqrt returns the square root n.
func Sqrt(n *big.Float) *big.Float {
prec := n.Prec()
x := new(big.Float).SetPrec(prec).SetInt64(1)
z := new(big.Float).SetPrec(prec).SetInt64(1)
half := new(big.Float).SetPrec(prec).SetFloat64(0.5)
t := new(big.Float).SetPrec(prec)
for {
z.Copy(x)
t.Mul(x, x)
t.Sub(t, n)
t.Quo(t, x)
t.Mul(t, half)
x.Sub(x, t)
if x.Cmp(z) == 0 {
break
}
}
return x
}
示例3: renderFloat
func renderFloat(img *image.RGBA) {
var yminF, ymaxMinF, heightF big.Float
yminF.SetInt64(ymin)
ymaxMinF.SetInt64(ymax - ymin)
heightF.SetInt64(height)
var xminF, xmaxMinF, widthF big.Float
xminF.SetInt64(xmin)
xmaxMinF.SetInt64(xmax - xmin)
widthF.SetInt64(width)
var y, x big.Float
for py := int64(0); py < height; py++ {
// y := float64(py)/height*(ymax-ymin) + ymin
y.SetInt64(py)
y.Quo(&y, &heightF)
y.Mul(&y, &ymaxMinF)
y.Add(&y, &yminF)
for px := int64(0); px < width; px++ {
// x := float64(px)/width*(xmax-xmin) + xmin
x.SetInt64(px)
x.Quo(&x, &widthF)
x.Mul(&x, &xmaxMinF)
x.Add(&x, &xminF)
c := mandelbrotFloat(&x, &y)
if c == nil {
c = color.Black
}
img.Set(int(px), int(py), c)
}
}
}
示例4: sincos
// sincos iterates a sin or cos Taylor series.
func sincos(name string, index int, x, z, exponent, factorial *big.Float) *big.Float {
plus := false
term := newF().Set(floatOne)
for j := 0; j < index; j++ {
term.Mul(term, x)
}
xN := newF().Set(term)
x2 := newF().Mul(x, x)
loop := newLoop(name, x, 4)
for {
// Invariant: factorial holds exponent!.
term.Quo(term, factorial)
if plus {
z.Add(z, term)
} else {
z.Sub(z, term)
}
plus = !plus
if loop.terminate(z) {
break
}
// Advance x**index (multiply by x²).
term.Mul(xN, x2)
xN.Set(term)
// Advance exponent and factorial.
exponent.Add(exponent, floatOne)
factorial.Mul(factorial, exponent)
exponent.Add(exponent, floatOne)
factorial.Mul(factorial, exponent)
}
return z
}
示例5: Sqrt
// Compute the square root of n using Newton's Method. We start with
// an initial estimate for sqrt(n), and then iterate
// x_{i+1} = 1/2 * ( x_i + (n / x_i) )
// Result is returned in x
func (e *Pslq) Sqrt(n, x *big.Float) {
if n == x {
panic("need distinct input and output")
}
if n.Sign() == 0 {
x.Set(n)
return
} else if n.Sign() < 0 {
panic("Sqrt of negative number")
}
prec := n.Prec()
// Use the floating point square root as initial estimate
nFloat64, _ := n.Float64()
x.SetPrec(prec).SetFloat64(math.Sqrt(nFloat64))
// We use t as a temporary variable. There's no need to set its precision
// since big.Float values with unset (== 0) precision automatically assume
// the largest precision of the arguments when used as the result (receiver)
// of a big.Float operation.
var t big.Float
// Iterate.
for {
t.Quo(n, x) // t = n / x_i
t.Add(x, &t) // t = x_i + (n / x_i)
t.Mul(&e.half, &t) // x_{i+1} = 0.5 * t
if x.Cmp(&t) == 0 {
// Exit loop if no change to result
break
}
x.Set(&t)
}
}
示例6: Mul_S
// Multiply
func (a Scalar) Mul_S(b S) S {
var x, y big.Float
x = big.Float(a)
y = big.Float(b.(Scalar))
z := x.Mul(&x, &y)
return (Scalar)(*z)
}
示例7: abs
func abs(x *complexFloat) *big.Float {
r := new(big.Float).SetPrec(prec)
i := new(big.Float).SetPrec(prec)
r.Copy(x.r)
i.Copy(x.i)
r.Mul(r, x.r) // r^2
i.Mul(i, x.i) // i^2
r.Add(r, i) // r^2 + i^2
return sqrtFloat(r) // sqrt(r^2 + i^2)
}
示例8: Sqrt
// Sqrt returns a big.Float representation of the square root of
// z. Precision is the same as the one of the argument. The function
// panics if z is negative, returns ±0 when z = ±0, and +Inf when z =
// +Inf.
func Sqrt(z *big.Float) *big.Float {
// panic on negative z
if z.Sign() == -1 {
panic("Sqrt: argument is negative")
}
// √±0 = ±0
if z.Sign() == 0 {
return big.NewFloat(float64(z.Sign()))
}
// √+Inf = +Inf
if z.IsInf() {
return big.NewFloat(math.Inf(+1))
}
// Compute √(a·2**b) as
// √(a)·2**b/2 if b is even
// √(2a)·2**b/2 if b > 0 is odd
// √(0.5a)·2**b/2 if b < 0 is odd
//
// The difference in the odd exponent case is due to the fact that
// exp/2 is rounded in different directions when exp is negative.
mant := new(big.Float)
exp := z.MantExp(mant)
switch exp % 2 {
case 1:
mant.Mul(big.NewFloat(2), mant)
case -1:
mant.Mul(big.NewFloat(0.5), mant)
}
// Solving x² - z = 0 directly requires a Quo call, but it's
// faster for small precisions.
//
// Solving 1/x² - z = 0 avoids the Quo call and is much faster for
// high precisions.
//
// Use sqrtDirect for prec <= 128 and sqrtInverse for prec > 128.
var x *big.Float
if z.Prec() <= 128 {
x = sqrtDirect(mant)
} else {
x = sqrtInverse(mant)
}
// re-attach the exponent and return
return x.SetMantExp(x, exp/2)
}
示例9: sqrt
// sqrt for big.Float
func sqrt(given *big.Float) *big.Float {
const prec = 200
steps := int(math.Log2(prec))
given.SetPrec(prec)
half := new(big.Float).SetPrec(prec).SetFloat64(0.5)
x := new(big.Float).SetPrec(prec).SetInt64(1)
t := new(big.Float)
for i := 0; i <= steps; i++ {
t.Quo(given, x)
t.Add(x, t)
t.Mul(half, t)
}
return x
}
示例10: mandelbrotFloat
func mandelbrotFloat(a, b *big.Float) color.Color {
var x, y, nx, ny, x2, y2, f2, f4, r2, tmp big.Float
f2.SetInt64(2)
f4.SetInt64(4)
x.SetInt64(0)
y.SetInt64(0)
defer func() { recover() }()
for n := uint8(0); n < iterations; n++ {
// Not update x2 and y2
// because they are already updated in the previous loop
nx.Sub(&x2, &y2)
nx.Add(&nx, a)
tmp.Mul(&x, &y)
ny.Mul(&f2, &tmp)
ny.Add(&ny, b)
x.Set(&nx)
y.Set(&ny)
x2.Mul(&x, &x)
y2.Mul(&y, &y)
r2.Add(&x2, &y2)
if r2.Cmp(&f4) > 0 {
return color.Gray{255 - contrast*n}
}
}
return color.Black
}
示例11: sqrtDirect
// compute √z using newton to solve
// t² - z = 0 for t
func sqrtDirect(z *big.Float) *big.Float {
// f(t)/f'(t) = 0.5(t² - z)/t
half := big.NewFloat(0.5)
f := func(t *big.Float) *big.Float {
x := new(big.Float).Mul(t, t) // x = t²
x.Sub(x, z) // x = t² - z
x.Mul(half, x) // x = 0.5(t² - z)
return x.Quo(x, t) // return x = 0.5(t² - z)/t
}
// initial guess
zf, _ := z.Float64()
guess := big.NewFloat(math.Sqrt(zf))
return newton(f, guess, z.Prec())
}
示例12: hypot
// hypot for big.Float
func hypot(p, q *big.Float) *big.Float {
// special cases
switch {
case p.IsInf() || q.IsInf():
return big.NewFloat(math.Inf(1))
}
p = p.Abs(p)
q = q.Abs(q)
if p.Cmp(p) < 0 {
p, q = q, p
}
if p.Cmp(big.NewFloat(0)) == 0 {
return big.NewFloat(0)
}
q = q.Quo(q, p)
return sqrt(q.Mul(q, q).Add(q, big.NewFloat(1))).Mul(q, p)
}
示例13: sqrtFloat
func sqrtFloat(x *big.Float) *big.Float {
t1 := new(big.Float).SetPrec(prec)
t2 := new(big.Float).SetPrec(prec)
t1.Copy(x)
// Iterate.
// x{n} = (x{n-1}+x{0}/x{n-1}) / 2
for i := 0; i <= steps; i++ {
if t1.Cmp(zero) == 0 || t1.IsInf() {
return t1
}
t2.Quo(x, t1)
t2.Add(t2, t1)
t1.Mul(half, t2)
}
return t1
}
示例14: Exp
// Exp returns a big.Float representation of exp(z). Precision is
// the same as the one of the argument. The function returns +Inf
// when z = +Inf, and 0 when z = -Inf.
func Exp(z *big.Float) *big.Float {
// exp(0) == 1
if z.Sign() == 0 {
return big.NewFloat(1).SetPrec(z.Prec())
}
// Exp(+Inf) = +Inf
if z.IsInf() && z.Sign() > 0 {
return big.NewFloat(math.Inf(+1)).SetPrec(z.Prec())
}
// Exp(-Inf) = 0
if z.IsInf() && z.Sign() < 0 {
return big.NewFloat(0).SetPrec(z.Prec())
}
guess := new(big.Float)
// try to get initial estimate using IEEE-754 math
zf, _ := z.Float64()
if zfs := math.Exp(zf); zfs == math.Inf(+1) || zfs == 0 {
// too big or too small for IEEE-754 math,
// perform argument reduction using
// e^{2z} = (e^z)²
halfZ := new(big.Float).Mul(z, big.NewFloat(0.5))
halfExp := Exp(halfZ.SetPrec(z.Prec() + 64))
return new(big.Float).Mul(halfExp, halfExp).SetPrec(z.Prec())
} else {
// we got a nice IEEE-754 estimate
guess.SetFloat64(zfs)
}
// f(t)/f'(t) = t*(log(t) - z)
f := func(t *big.Float) *big.Float {
x := new(big.Float)
x.Sub(Log(t), z)
return x.Mul(x, t)
}
x := newton(f, guess, z.Prec())
return x
}
示例15: Example_sqrt2
// This example shows how to use big.Float to compute the square root of 2 with
// a precision of 200 bits, and how to print the result as a decimal number.
func Example_sqrt2() {
// We'll do computations with 200 bits of precision in the mantissa.
const prec = 200
// Compute the square root of 2 using Newton's Method. We start with
// an initial estimate for sqrt(2), and then iterate:
// x_{n+1} = 1/2 * ( x_n + (2.0 / x_n) )
// Since Newton's Method doubles the number of correct digits at each
// iteration, we need at least log_2(prec) steps.
steps := int(math.Log2(prec))
// Initialize values we need for the computation.
two := new(big.Float).SetPrec(prec).SetInt64(2)
half := new(big.Float).SetPrec(prec).SetFloat64(0.5)
// Use 1 as the initial estimate.
x := new(big.Float).SetPrec(prec).SetInt64(1)
// We use t as a temporary variable. There's no need to set its precision
// since big.Float values with unset (== 0) precision automatically assume
// the largest precision of the arguments when used as the result (receiver)
// of a big.Float operation.
t := new(big.Float)
// Iterate.
for i := 0; i <= steps; i++ {
t.Quo(two, x) // t = 2.0 / x_n
t.Add(x, t) // t = x_n + (2.0 / x_n)
x.Mul(half, t) // x_{n+1} = 0.5 * t
}
// We can use the usual fmt.Printf verbs since big.Float implements fmt.Formatter
fmt.Printf("sqrt(2) = %.50f\n", x)
// Print the error between 2 and x*x.
t.Mul(x, x) // t = x*x
fmt.Printf("error = %e\n", t.Sub(two, t))
// Output:
// sqrt(2) = 1.41421356237309504880168872420969807856967187537695
// error = 0.000000e+00
}