當前位置: 首頁>>代碼示例>>Golang>>正文


Golang Float.IsInf方法代碼示例

本文整理匯總了Golang中math/big.Float.IsInf方法的典型用法代碼示例。如果您正苦於以下問題:Golang Float.IsInf方法的具體用法?Golang Float.IsInf怎麽用?Golang Float.IsInf使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在math/big.Float的用法示例。


在下文中一共展示了Float.IsInf方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Golang代碼示例。

示例1: smallRat

// smallRat reports whether x would lead to "reasonably"-sized fraction
// if converted to a *big.Rat.
func smallRat(x *big.Float) bool {
	if !x.IsInf() {
		e := x.MantExp(nil)
		return -maxExp < e && e < maxExp
	}
	return false
}
開發者ID:2thetop,項目名稱:go,代碼行數:9,代碼來源:value.go

示例2: quo

func quo(x, y *complexFloat) *complexFloat {
	z := newComplexFloat()
	denominator := new(big.Float).SetPrec(prec)
	c2 := new(big.Float).SetPrec(prec)
	d2 := new(big.Float).SetPrec(prec)
	c2.Mul(y.r, y.r)
	d2.Mul(y.i, y.i)
	denominator.Add(c2, d2)

	if denominator.Cmp(zero) == 0 || denominator.IsInf() {
		return newComplexFloat()
	}

	ac := new(big.Float).SetPrec(prec)
	bd := new(big.Float).SetPrec(prec)
	ac.Mul(x.r, y.r)
	bd.Mul(x.i, y.i)

	bc := new(big.Float).SetPrec(prec)
	ad := new(big.Float).SetPrec(prec)
	bc.Mul(x.i, y.r)
	ad.Mul(x.r, y.i)

	z.r.Add(ac, bd)
	z.r.Quo(z.r, denominator)

	z.i.Add(bc, ad.Neg(ad))
	z.i.Quo(z.i, denominator)

	return z
}
開發者ID:ysohta,項目名稱:gopl-ex,代碼行數:31,代碼來源:complexfloat.go

示例3: Sqrt

// Sqrt returns a big.Float representation of the square root of
// z. Precision is the same as the one of the argument. The function
// panics if z is negative, returns ±0 when z = ±0, and +Inf when z =
// +Inf.
func Sqrt(z *big.Float) *big.Float {

	// panic on negative z
	if z.Sign() == -1 {
		panic("Sqrt: argument is negative")
	}

	// √±0 = ±0
	if z.Sign() == 0 {
		return big.NewFloat(float64(z.Sign()))
	}

	// √+Inf  = +Inf
	if z.IsInf() {
		return big.NewFloat(math.Inf(+1))
	}

	// Compute √(a·2**b) as
	//   √(a)·2**b/2       if b is even
	//   √(2a)·2**b/2      if b > 0 is odd
	//   √(0.5a)·2**b/2    if b < 0 is odd
	//
	// The difference in the odd exponent case is due to the fact that
	// exp/2 is rounded in different directions when exp is negative.
	mant := new(big.Float)
	exp := z.MantExp(mant)
	switch exp % 2 {
	case 1:
		mant.Mul(big.NewFloat(2), mant)
	case -1:
		mant.Mul(big.NewFloat(0.5), mant)
	}

	// Solving x² - z = 0 directly requires a Quo call, but it's
	// faster for small precisions.
	//
	// Solving 1/x² - z = 0 avoids the Quo call and is much faster for
	// high precisions.
	//
	// Use sqrtDirect for prec <= 128 and sqrtInverse for prec > 128.
	var x *big.Float
	if z.Prec() <= 128 {
		x = sqrtDirect(mant)
	} else {
		x = sqrtInverse(mant)
	}

	// re-attach the exponent and return
	return x.SetMantExp(x, exp/2)

}
開發者ID:ALTree,項目名稱:floats,代碼行數:55,代碼來源:sqrt.go

示例4: hypot

// hypot for big.Float
func hypot(p, q *big.Float) *big.Float {
	// special cases
	switch {
	case p.IsInf() || q.IsInf():
		return big.NewFloat(math.Inf(1))
	}
	p = p.Abs(p)
	q = q.Abs(q)
	if p.Cmp(p) < 0 {
		p, q = q, p
	}
	if p.Cmp(big.NewFloat(0)) == 0 {
		return big.NewFloat(0)
	}
	q = q.Quo(q, p)
	return sqrt(q.Mul(q, q).Add(q, big.NewFloat(1))).Mul(q, p)
}
開發者ID:suzuken,項目名稱:gopl,代碼行數:18,代碼來源:bigfloat.go

示例5: sqrtFloat

func sqrtFloat(x *big.Float) *big.Float {
	t1 := new(big.Float).SetPrec(prec)
	t2 := new(big.Float).SetPrec(prec)
	t1.Copy(x)

	// Iterate.
	// x{n} = (x{n-1}+x{0}/x{n-1}) / 2
	for i := 0; i <= steps; i++ {
		if t1.Cmp(zero) == 0 || t1.IsInf() {
			return t1
		}
		t2.Quo(x, t1)
		t2.Add(t2, t1)
		t1.Mul(half, t2)
	}

	return t1
}
開發者ID:ysohta,項目名稱:gopl-ex,代碼行數:18,代碼來源:complexfloat.go

示例6: Exp

// Exp returns a big.Float representation of exp(z). Precision is
// the same as the one of the argument. The function returns +Inf
// when z = +Inf, and 0 when z = -Inf.
func Exp(z *big.Float) *big.Float {

	// exp(0) == 1
	if z.Sign() == 0 {
		return big.NewFloat(1).SetPrec(z.Prec())
	}

	// Exp(+Inf) = +Inf
	if z.IsInf() && z.Sign() > 0 {
		return big.NewFloat(math.Inf(+1)).SetPrec(z.Prec())
	}

	// Exp(-Inf) = 0
	if z.IsInf() && z.Sign() < 0 {
		return big.NewFloat(0).SetPrec(z.Prec())
	}

	guess := new(big.Float)

	// try to get initial estimate using IEEE-754 math
	zf, _ := z.Float64()
	if zfs := math.Exp(zf); zfs == math.Inf(+1) || zfs == 0 {
		// too big or too small for IEEE-754 math,
		// perform argument reduction using
		//     e^{2z} = (e^z)²
		halfZ := new(big.Float).Mul(z, big.NewFloat(0.5))
		halfExp := Exp(halfZ.SetPrec(z.Prec() + 64))
		return new(big.Float).Mul(halfExp, halfExp).SetPrec(z.Prec())
	} else {
		// we got a nice IEEE-754 estimate
		guess.SetFloat64(zfs)
	}

	// f(t)/f'(t) = t*(log(t) - z)
	f := func(t *big.Float) *big.Float {
		x := new(big.Float)
		x.Sub(Log(t), z)
		return x.Mul(x, t)
	}

	x := newton(f, guess, z.Prec())

	return x
}
開發者ID:ALTree,項目名稱:floats,代碼行數:47,代碼來源:exp.go

示例7: Pow

// Pow returns a big.Float representation of z**w. Precision is the same as the one
// of the first argument. The function panics when z is negative.
func Pow(z *big.Float, w *big.Float) *big.Float {

	if z.Sign() < 0 {
		panic("Pow: negative base")
	}

	// Pow(z, 0) = 1.0
	if w.Sign() == 0 {
		return big.NewFloat(1).SetPrec(z.Prec())
	}

	// Pow(z, 1) = z
	// Pow(+Inf, n) = +Inf
	if w.Cmp(big.NewFloat(1)) == 0 || z.IsInf() {
		return new(big.Float).Copy(z)
	}

	// Pow(z, -w) = 1 / Pow(z, w)
	if w.Sign() < 0 {
		x := new(big.Float)
		zExt := new(big.Float).Copy(z).SetPrec(z.Prec() + 64)
		wNeg := new(big.Float).Neg(w)
		return x.Quo(big.NewFloat(1), Pow(zExt, wNeg)).SetPrec(z.Prec())
	}

	// w integer fast path
	if w.IsInt() {
		wi, _ := w.Int64()
		return powInt(z, int(wi))
	}

	// compute w**z as exp(z log(w))
	x := new(big.Float).SetPrec(z.Prec() + 64)
	logZ := Log(new(big.Float).Copy(z).SetPrec(z.Prec() + 64))
	x.Mul(w, logZ)
	x = Exp(x)
	return x.SetPrec(z.Prec())

}
開發者ID:ALTree,項目名稱:floats,代碼行數:41,代碼來源:pow.go

示例8: Log

// Log returns a big.Float representation of the natural logarithm of
// z. Precision is the same as the one of the argument. The function
// panics if z is negative, returns -Inf when z = 0, and +Inf when z =
// +Inf
func Log(z *big.Float) *big.Float {

	// panic on negative z
	if z.Sign() == -1 {
		panic("Log: argument is negative")
	}

	// Log(0) = -Inf
	if z.Sign() == 0 {
		return big.NewFloat(math.Inf(-1)).SetPrec(z.Prec())
	}

	prec := z.Prec() + 64 // guard digits

	one := big.NewFloat(1).SetPrec(prec)
	two := big.NewFloat(2).SetPrec(prec)
	four := big.NewFloat(4).SetPrec(prec)

	// Log(1) = 0
	if z.Cmp(one) == 0 {
		return big.NewFloat(0).SetPrec(z.Prec())
	}

	// Log(+Inf) = +Inf
	if z.IsInf() {
		return big.NewFloat(math.Inf(+1)).SetPrec(z.Prec())
	}

	x := new(big.Float).SetPrec(prec)

	// if 0 < z < 1 we compute log(z) as -log(1/z)
	var neg bool
	if z.Cmp(one) < 0 {
		x.Quo(one, z)
		neg = true
	} else {
		x.Set(z)
	}

	// We scale up x until x >= 2**(prec/2), and then we'll be allowed
	// to use the AGM formula for Log(x).
	//
	// Double x until the condition is met, and keep track of the
	// number of doubling we did (needed to scale back later).

	lim := new(big.Float)
	lim.SetMantExp(two, int(prec/2))

	k := 0
	for x.Cmp(lim) < 0 {
		x.Mul(x, x)
		k++
	}

	// Compute the natural log of x using the fact that
	//     log(x) = π / (2 * AGM(1, 4/x))
	// if
	//     x >= 2**(prec/2),
	// where prec is the desired precision (in bits)
	pi := pi(prec)
	agm := agm(one, x.Quo(four, x)) // agm = AGM(1, 4/x)

	x.Quo(pi, x.Mul(two, agm)) // reuse x, we don't need it

	if neg {
		x.Neg(x)
	}

	// scale the result back multiplying by 2**-k
	// reuse lim to reduce allocations.
	x.Mul(x, lim.SetMantExp(one, -k))

	return x.SetPrec(z.Prec())
}
開發者ID:ALTree,項目名稱:floats,代碼行數:78,代碼來源:log.go


注:本文中的math/big.Float.IsInf方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。