本文整理匯總了Golang中math/big.Float.IsInf方法的典型用法代碼示例。如果您正苦於以下問題:Golang Float.IsInf方法的具體用法?Golang Float.IsInf怎麽用?Golang Float.IsInf使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類math/big.Float
的用法示例。
在下文中一共展示了Float.IsInf方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Golang代碼示例。
示例1: smallRat
// smallRat reports whether x would lead to "reasonably"-sized fraction
// if converted to a *big.Rat.
func smallRat(x *big.Float) bool {
if !x.IsInf() {
e := x.MantExp(nil)
return -maxExp < e && e < maxExp
}
return false
}
示例2: quo
func quo(x, y *complexFloat) *complexFloat {
z := newComplexFloat()
denominator := new(big.Float).SetPrec(prec)
c2 := new(big.Float).SetPrec(prec)
d2 := new(big.Float).SetPrec(prec)
c2.Mul(y.r, y.r)
d2.Mul(y.i, y.i)
denominator.Add(c2, d2)
if denominator.Cmp(zero) == 0 || denominator.IsInf() {
return newComplexFloat()
}
ac := new(big.Float).SetPrec(prec)
bd := new(big.Float).SetPrec(prec)
ac.Mul(x.r, y.r)
bd.Mul(x.i, y.i)
bc := new(big.Float).SetPrec(prec)
ad := new(big.Float).SetPrec(prec)
bc.Mul(x.i, y.r)
ad.Mul(x.r, y.i)
z.r.Add(ac, bd)
z.r.Quo(z.r, denominator)
z.i.Add(bc, ad.Neg(ad))
z.i.Quo(z.i, denominator)
return z
}
示例3: Sqrt
// Sqrt returns a big.Float representation of the square root of
// z. Precision is the same as the one of the argument. The function
// panics if z is negative, returns ±0 when z = ±0, and +Inf when z =
// +Inf.
func Sqrt(z *big.Float) *big.Float {
// panic on negative z
if z.Sign() == -1 {
panic("Sqrt: argument is negative")
}
// √±0 = ±0
if z.Sign() == 0 {
return big.NewFloat(float64(z.Sign()))
}
// √+Inf = +Inf
if z.IsInf() {
return big.NewFloat(math.Inf(+1))
}
// Compute √(a·2**b) as
// √(a)·2**b/2 if b is even
// √(2a)·2**b/2 if b > 0 is odd
// √(0.5a)·2**b/2 if b < 0 is odd
//
// The difference in the odd exponent case is due to the fact that
// exp/2 is rounded in different directions when exp is negative.
mant := new(big.Float)
exp := z.MantExp(mant)
switch exp % 2 {
case 1:
mant.Mul(big.NewFloat(2), mant)
case -1:
mant.Mul(big.NewFloat(0.5), mant)
}
// Solving x² - z = 0 directly requires a Quo call, but it's
// faster for small precisions.
//
// Solving 1/x² - z = 0 avoids the Quo call and is much faster for
// high precisions.
//
// Use sqrtDirect for prec <= 128 and sqrtInverse for prec > 128.
var x *big.Float
if z.Prec() <= 128 {
x = sqrtDirect(mant)
} else {
x = sqrtInverse(mant)
}
// re-attach the exponent and return
return x.SetMantExp(x, exp/2)
}
示例4: hypot
// hypot for big.Float
func hypot(p, q *big.Float) *big.Float {
// special cases
switch {
case p.IsInf() || q.IsInf():
return big.NewFloat(math.Inf(1))
}
p = p.Abs(p)
q = q.Abs(q)
if p.Cmp(p) < 0 {
p, q = q, p
}
if p.Cmp(big.NewFloat(0)) == 0 {
return big.NewFloat(0)
}
q = q.Quo(q, p)
return sqrt(q.Mul(q, q).Add(q, big.NewFloat(1))).Mul(q, p)
}
示例5: sqrtFloat
func sqrtFloat(x *big.Float) *big.Float {
t1 := new(big.Float).SetPrec(prec)
t2 := new(big.Float).SetPrec(prec)
t1.Copy(x)
// Iterate.
// x{n} = (x{n-1}+x{0}/x{n-1}) / 2
for i := 0; i <= steps; i++ {
if t1.Cmp(zero) == 0 || t1.IsInf() {
return t1
}
t2.Quo(x, t1)
t2.Add(t2, t1)
t1.Mul(half, t2)
}
return t1
}
示例6: Exp
// Exp returns a big.Float representation of exp(z). Precision is
// the same as the one of the argument. The function returns +Inf
// when z = +Inf, and 0 when z = -Inf.
func Exp(z *big.Float) *big.Float {
// exp(0) == 1
if z.Sign() == 0 {
return big.NewFloat(1).SetPrec(z.Prec())
}
// Exp(+Inf) = +Inf
if z.IsInf() && z.Sign() > 0 {
return big.NewFloat(math.Inf(+1)).SetPrec(z.Prec())
}
// Exp(-Inf) = 0
if z.IsInf() && z.Sign() < 0 {
return big.NewFloat(0).SetPrec(z.Prec())
}
guess := new(big.Float)
// try to get initial estimate using IEEE-754 math
zf, _ := z.Float64()
if zfs := math.Exp(zf); zfs == math.Inf(+1) || zfs == 0 {
// too big or too small for IEEE-754 math,
// perform argument reduction using
// e^{2z} = (e^z)²
halfZ := new(big.Float).Mul(z, big.NewFloat(0.5))
halfExp := Exp(halfZ.SetPrec(z.Prec() + 64))
return new(big.Float).Mul(halfExp, halfExp).SetPrec(z.Prec())
} else {
// we got a nice IEEE-754 estimate
guess.SetFloat64(zfs)
}
// f(t)/f'(t) = t*(log(t) - z)
f := func(t *big.Float) *big.Float {
x := new(big.Float)
x.Sub(Log(t), z)
return x.Mul(x, t)
}
x := newton(f, guess, z.Prec())
return x
}
示例7: Pow
// Pow returns a big.Float representation of z**w. Precision is the same as the one
// of the first argument. The function panics when z is negative.
func Pow(z *big.Float, w *big.Float) *big.Float {
if z.Sign() < 0 {
panic("Pow: negative base")
}
// Pow(z, 0) = 1.0
if w.Sign() == 0 {
return big.NewFloat(1).SetPrec(z.Prec())
}
// Pow(z, 1) = z
// Pow(+Inf, n) = +Inf
if w.Cmp(big.NewFloat(1)) == 0 || z.IsInf() {
return new(big.Float).Copy(z)
}
// Pow(z, -w) = 1 / Pow(z, w)
if w.Sign() < 0 {
x := new(big.Float)
zExt := new(big.Float).Copy(z).SetPrec(z.Prec() + 64)
wNeg := new(big.Float).Neg(w)
return x.Quo(big.NewFloat(1), Pow(zExt, wNeg)).SetPrec(z.Prec())
}
// w integer fast path
if w.IsInt() {
wi, _ := w.Int64()
return powInt(z, int(wi))
}
// compute w**z as exp(z log(w))
x := new(big.Float).SetPrec(z.Prec() + 64)
logZ := Log(new(big.Float).Copy(z).SetPrec(z.Prec() + 64))
x.Mul(w, logZ)
x = Exp(x)
return x.SetPrec(z.Prec())
}
示例8: Log
// Log returns a big.Float representation of the natural logarithm of
// z. Precision is the same as the one of the argument. The function
// panics if z is negative, returns -Inf when z = 0, and +Inf when z =
// +Inf
func Log(z *big.Float) *big.Float {
// panic on negative z
if z.Sign() == -1 {
panic("Log: argument is negative")
}
// Log(0) = -Inf
if z.Sign() == 0 {
return big.NewFloat(math.Inf(-1)).SetPrec(z.Prec())
}
prec := z.Prec() + 64 // guard digits
one := big.NewFloat(1).SetPrec(prec)
two := big.NewFloat(2).SetPrec(prec)
four := big.NewFloat(4).SetPrec(prec)
// Log(1) = 0
if z.Cmp(one) == 0 {
return big.NewFloat(0).SetPrec(z.Prec())
}
// Log(+Inf) = +Inf
if z.IsInf() {
return big.NewFloat(math.Inf(+1)).SetPrec(z.Prec())
}
x := new(big.Float).SetPrec(prec)
// if 0 < z < 1 we compute log(z) as -log(1/z)
var neg bool
if z.Cmp(one) < 0 {
x.Quo(one, z)
neg = true
} else {
x.Set(z)
}
// We scale up x until x >= 2**(prec/2), and then we'll be allowed
// to use the AGM formula for Log(x).
//
// Double x until the condition is met, and keep track of the
// number of doubling we did (needed to scale back later).
lim := new(big.Float)
lim.SetMantExp(two, int(prec/2))
k := 0
for x.Cmp(lim) < 0 {
x.Mul(x, x)
k++
}
// Compute the natural log of x using the fact that
// log(x) = π / (2 * AGM(1, 4/x))
// if
// x >= 2**(prec/2),
// where prec is the desired precision (in bits)
pi := pi(prec)
agm := agm(one, x.Quo(four, x)) // agm = AGM(1, 4/x)
x.Quo(pi, x.Mul(two, agm)) // reuse x, we don't need it
if neg {
x.Neg(x)
}
// scale the result back multiplying by 2**-k
// reuse lim to reduce allocations.
x.Mul(x, lim.SetMantExp(one, -k))
return x.SetPrec(z.Prec())
}