本文整理匯總了Golang中math/big.Float.Int方法的典型用法代碼示例。如果您正苦於以下問題:Golang Float.Int方法的具體用法?Golang Float.Int怎麽用?Golang Float.Int使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類math/big.Float
的用法示例。
在下文中一共展示了Float.Int方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Golang代碼示例。
示例1: float
func (p *exporter) float(x *Mpflt) {
// extract sign (there is no -0)
f := &x.Val
sign := f.Sign()
if sign == 0 {
// x == 0
p.int(0)
return
}
// x != 0
// extract exponent such that 0.5 <= m < 1.0
var m big.Float
exp := f.MantExp(&m)
// extract mantissa as *big.Int
// - set exponent large enough so mant satisfies mant.IsInt()
// - get *big.Int from mant
m.SetMantExp(&m, int(m.MinPrec()))
mant, acc := m.Int(nil)
if acc != big.Exact {
Fatalf("exporter: internal error")
}
p.int(sign)
p.int(exp)
p.string(string(mant.Bytes()))
}
示例2: SetFloat
func (a *Mpint) SetFloat(b *Mpflt) int {
// avoid converting huge floating-point numbers to integers
// (2*Mpprec is large enough to permit all tests to pass)
if b.Val.MantExp(nil) > 2*Mpprec {
return -1
}
if _, acc := b.Val.Int(&a.Val); acc == big.Exact {
return 0
}
const delta = 16 // a reasonably small number of bits > 0
var t big.Float
t.SetPrec(Mpprec - delta)
// try rounding down a little
t.SetMode(big.ToZero)
t.Set(&b.Val)
if _, acc := t.Int(&a.Val); acc == big.Exact {
return 0
}
// try rounding up a little
t.SetMode(big.AwayFromZero)
t.Set(&b.Val)
if _, acc := t.Int(&a.Val); acc == big.Exact {
return 0
}
return -1
}
示例3: NearestInt
// NearestInt set res to the nearest integer to x
func (e *Pslq) NearestInt(x *big.Float, res *big.Int) {
prec := x.Prec()
var tmp big.Float
tmp.SetPrec(prec)
if x.Sign() >= 0 {
tmp.Add(x, &e.half)
} else {
tmp.Sub(x, &e.half)
}
tmp.Int(res)
}
示例4: ToInt
// ToInt converts x to an Int value if x is representable as an Int.
// Otherwise it returns an Unknown.
func ToInt(x Value) Value {
switch x := x.(type) {
case int64Val, intVal:
return x
case ratVal:
if x.val.IsInt() {
return makeInt(x.val.Num())
}
case floatVal:
// avoid creation of huge integers
// (Existing tests require permitting exponents of at least 1024;
// allow any value that would also be permissible as a fraction.)
if smallRat(x.val) {
i := newInt()
if _, acc := x.val.Int(i); acc == big.Exact {
return makeInt(i)
}
// If we can get an integer by rounding up or down,
// assume x is not an integer because of rounding
// errors in prior computations.
const delta = 4 // a small number of bits > 0
var t big.Float
t.SetPrec(prec - delta)
// try rounding down a little
t.SetMode(big.ToZero)
t.Set(x.val)
if _, acc := t.Int(i); acc == big.Exact {
return makeInt(i)
}
// try rounding up a little
t.SetMode(big.AwayFromZero)
t.Set(x.val)
if _, acc := t.Int(i); acc == big.Exact {
return makeInt(i)
}
}
case complexVal:
if re := ToFloat(x); re.Kind() == Float {
return ToInt(re)
}
}
return unknownVal{}
}
示例5: float
func (p *exporter) float(x constant.Value) {
if x.Kind() != constant.Float {
log.Fatalf("gcimporter: unexpected constant %v, want float", x)
}
// extract sign (there is no -0)
sign := constant.Sign(x)
if sign == 0 {
// x == 0
p.int(0)
return
}
// x != 0
var f big.Float
if v, exact := constant.Float64Val(x); exact {
// float64
f.SetFloat64(v)
} else if num, denom := constant.Num(x), constant.Denom(x); num.Kind() == constant.Int {
// TODO(gri): add big.Rat accessor to constant.Value.
r := valueToRat(num)
f.SetRat(r.Quo(r, valueToRat(denom)))
} else {
// Value too large to represent as a fraction => inaccessible.
// TODO(gri): add big.Float accessor to constant.Value.
f.SetFloat64(math.MaxFloat64) // FIXME
}
// extract exponent such that 0.5 <= m < 1.0
var m big.Float
exp := f.MantExp(&m)
// extract mantissa as *big.Int
// - set exponent large enough so mant satisfies mant.IsInt()
// - get *big.Int from mant
m.SetMantExp(&m, int(m.MinPrec()))
mant, acc := m.Int(nil)
if acc != big.Exact {
log.Fatalf("gcimporter: internal error")
}
p.int(sign)
p.int(exp)
p.string(string(mant.Bytes()))
}
示例6: Run
// Given a vector of real numbers x = [x_0, x_1, ..., x_n], this
// uses the PSLQ algorithm to find a list of integers
// [c_0, c_1, ..., c_n] such that
//
// |c_1 * x_1 + c_2 * x_2 + ... + c_n * x_n| < tolerance
//
// and such that max |c_k| < maxcoeff. If no such vector exists, Pslq
// returns one of the errors in this package depending on whether it
// has run out of iterations, precision or explored up to the
// maxcoeff. The tolerance defaults to 3/4 of the precision.
//
// This is a fairly direct translation of the pseudocode given by
// David Bailey, "The PSLQ Integer Relation Algorithm":
// http://www.cecm.sfu.ca/organics/papers/bailey/paper/html/node3.html
//
// If a result is returned, the first non-zero element will be positive
func (e *Pslq) Run(x []big.Float) ([]big.Int, error) {
n := len(x)
if n <= 1 {
return nil, ErrorBadArguments
}
// At too low precision, the algorithm becomes meaningless
if e.prec < 64 {
return nil, ErrorPrecisionTooLow
}
if e.verbose && int(e.prec)/max(2, int(n)) < 5 {
log.Printf("Warning: precision for PSLQ may be too low")
}
if e.verbose {
log.Printf("PSLQ using prec %d and tol %g", e.prec, e.tol)
}
if e.tol.Sign() == 0 {
return nil, ErrorToleranceRoundsToZero
}
// Temporary variables
tmp0 := new(big.Float).SetPrec(e.prec)
tmp1 := new(big.Float).SetPrec(e.prec)
bigTmp := new(big.Int)
// Convert to use 1-based indexing to allow us to be
// consistent with Bailey's indexing.
xNew := make([]big.Float, len(x)+1)
minx := new(big.Float).SetPrec(e.prec)
minxFirst := true
for i, xk := range x {
p := &xNew[i+1]
p.Set(&xk)
tmp0.Abs(p)
if minxFirst || tmp0.Cmp(minx) < 0 {
minxFirst = false
minx.Set(tmp0)
}
}
x = xNew
if debug {
printVector("x", x)
}
// Sanity check on magnitudes
if minx.Sign() == 0 {
return nil, ErrorZeroArguments
}
tmp1.SetInt64(128)
tmp0.Quo(&e.tol, tmp1)
if minx.Cmp(tmp0) < 0 { // minx < tol/128
return nil, ErrorArgumentTooSmall
}
tmp0.SetInt64(4)
tmp1.SetInt64(3)
tmp0.Quo(tmp0, tmp1)
var γ big.Float
e.Sqrt(tmp0, &γ) // sqrt(4<<prec)/3)
if debug {
fmt.Printf("γ = %f\n", &γ)
}
A := newBigIntMatrix(n+1, n+1)
B := newBigIntMatrix(n+1, n+1)
H := newMatrix(n+1, n+1)
// Initialization Step 1
//
// Set the n×n matrices A and B to the identity.
for i := 1; i <= n; i++ {
for j := 1; j <= n; j++ {
if i == j {
A[i][j].SetInt64(1)
B[i][j].SetInt64(1)
} else {
A[i][j].SetInt64(0)
B[i][j].SetInt64(0)
}
H[i][j].SetInt64(0)
}
}
if debug {
//.........這裏部分代碼省略.........