本文整理匯總了C#中NBitcoin.BouncyCastle.Math.BigInteger.Subtract方法的典型用法代碼示例。如果您正苦於以下問題:C# BigInteger.Subtract方法的具體用法?C# BigInteger.Subtract怎麽用?C# BigInteger.Subtract使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類NBitcoin.BouncyCastle.Math.BigInteger
的用法示例。
在下文中一共展示了BigInteger.Subtract方法的13個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的C#代碼示例。
示例1: CreateRandomInRange
/**
* Return a random BigInteger not less than 'min' and not greater than 'max'
*
* @param min the least value that may be generated
* @param max the greatest value that may be generated
* @param random the source of randomness
* @return a random BigInteger value in the range [min,max]
*/
public static BigInteger CreateRandomInRange(
BigInteger min,
BigInteger max,
// TODO Should have been just Random class
SecureRandom random)
{
int cmp = min.CompareTo(max);
if(cmp >= 0)
{
if(cmp > 0)
throw new ArgumentException("'min' may not be greater than 'max'");
return min;
}
if(min.BitLength > max.BitLength / 2)
{
return CreateRandomInRange(BigInteger.Zero, max.Subtract(min), random).Add(min);
}
for(int i = 0; i < MaxIterations; ++i)
{
BigInteger x = new BigInteger(max.BitLength, random);
if(x.CompareTo(min) >= 0 && x.CompareTo(max) <= 0)
{
return x;
}
}
// fall back to a faster (restricted) method
return new BigInteger(max.Subtract(min).BitLength - 1, random).Add(min);
}
示例2: GeneratePrivateKey
private static BigInteger GeneratePrivateKey(BigInteger q, SecureRandom random)
{
// B.1.2 Key Pair Generation by Testing Candidates
int minWeight = q.BitLength >> 2;
for (;;)
{
// TODO Prefer this method? (change test cases that used fixed random)
// B.1.1 Key Pair Generation Using Extra Random Bits
//BigInteger x = new BigInteger(q.BitLength + 64, random).Mod(q.Subtract(One)).Add(One);
BigInteger x = BigIntegers.CreateRandomInRange(One, q.Subtract(One), random);
if (WNafUtilities.GetNafWeight(x) >= minWeight)
{
return x;
}
}
}
示例3: DHParameters
public DHParameters(
BigInteger p,
BigInteger g,
BigInteger q,
int m,
int l,
BigInteger j,
DHValidationParameters validation)
{
if (p == null)
throw new ArgumentNullException("p");
if (g == null)
throw new ArgumentNullException("g");
if (!p.TestBit(0))
throw new ArgumentException("field must be an odd prime", "p");
if (g.CompareTo(BigInteger.Two) < 0
|| g.CompareTo(p.Subtract(BigInteger.Two)) > 0)
throw new ArgumentException("generator must in the range [2, p - 2]", "g");
if (q != null && q.BitLength >= p.BitLength)
throw new ArgumentException("q too big to be a factor of (p-1)", "q");
if (m >= p.BitLength)
throw new ArgumentException("m value must be < bitlength of p", "m");
if (l != 0)
{
if (l >= p.BitLength)
throw new ArgumentException("when l value specified, it must be less than bitlength(p)", "l");
if (l < m)
throw new ArgumentException("when l value specified, it may not be less than m value", "l");
}
if (j != null && j.CompareTo(BigInteger.Two) < 0)
throw new ArgumentException("subgroup factor must be >= 2", "j");
// TODO If q, j both provided, validate p = jq + 1 ?
this.p = p;
this.g = g;
this.q = q;
this.m = m;
this.l = l;
this.j = j;
this.validation = validation;
}
示例4: VerifySignature
// Section 7.2.6 ECVP-NR, pg 35
/**
* return true if the value r and s represent a signature for the
* message passed in. Generally, the order of the curve should be at
* least as long as the hash of the message of interest, and with
* ECNR, it *must* be at least as long. But just in case the signer
* applied mod(n) to the longer digest, this implementation will
* apply mod(n) during verification.
*
* @param digest the digest to be verified.
* @param r the r value of the signature.
* @param s the s value of the signature.
* @exception DataLengthException if the digest is longer than the key allows
*/
public bool VerifySignature(
byte[] message,
BigInteger r,
BigInteger s)
{
if (this.forSigning)
{
// not properly initilaized... deal with it
throw new InvalidOperationException("not initialised for verifying");
}
ECPublicKeyParameters pubKey = (ECPublicKeyParameters)key;
BigInteger n = pubKey.Parameters.N;
int nBitLength = n.BitLength;
BigInteger e = new BigInteger(1, message);
int eBitLength = e.BitLength;
if (eBitLength > nBitLength)
{
throw new DataLengthException("input too large for ECNR key.");
}
// r in the range [1,n-1]
if (r.CompareTo(BigInteger.One) < 0 || r.CompareTo(n) >= 0)
{
return false;
}
// s in the range [0,n-1] NB: ECNR spec says 0
if (s.CompareTo(BigInteger.Zero) < 0 || s.CompareTo(n) >= 0)
{
return false;
}
// compute P = sG + rW
ECPoint G = pubKey.Parameters.G;
ECPoint W = pubKey.Q;
// calculate P using Bouncy math
ECPoint P = ECAlgorithms.SumOfTwoMultiplies(G, s, W, r).Normalize();
if (P.IsInfinity)
return false;
BigInteger x = P.AffineXCoord.ToBigInteger();
BigInteger t = r.Subtract(x).Mod(n);
return t.Equals(e);
}
示例5: PlayingWithSignatures
//[Fact]
//http://bitcoin.stackexchange.com/questions/25814/ecdsa-signature-and-the-z-value
//http://www.nilsschneider.net/2013/01/28/recovering-bitcoin-private-keys.html
public void PlayingWithSignatures()
{
var script1 = new Script("30440220d47ce4c025c35ec440bc81d99834a624875161a26bf56ef7fdc0f5d52f843ad1022044e1ff2dfd8102cf7a47c21d5c9fd5701610d04953c6836596b4fe9dd2f53e3e01 04dbd0c61532279cf72981c3584fc32216e0127699635c2789f549e0730c059b81ae133016a69c21e23f1859a95f06d52b7bf149a8f2fe4e8535c8a829b449c5ff");
var script2 = new Script("30440220d47ce4c025c35ec440bc81d99834a624875161a26bf56ef7fdc0f5d52f843ad102209a5f1c75e461d7ceb1cf3cab9013eb2dc85b6d0da8c3c6e27e3a5a5b3faa5bab01 04dbd0c61532279cf72981c3584fc32216e0127699635c2789f549e0730c059b81ae133016a69c21e23f1859a95f06d52b7bf149a8f2fe4e8535c8a829b449c5ff");
var sig1 = (PayToPubkeyHashTemplate.Instance.ExtractScriptSigParameters(script1).TransactionSignature.Signature);
var sig2 = (PayToPubkeyHashTemplate.Instance.ExtractScriptSigParameters(script2).TransactionSignature.Signature);
var n = ECKey.CURVE.N;
var z1 = new BigInteger(1, Encoders.Hex.DecodeData("c0e2d0a89a348de88fda08211c70d1d7e52ccef2eb9459911bf977d587784c6e"));
var z2 = new BigInteger(1, Encoders.Hex.DecodeData("17b0f41c8c337ac1e18c98759e83a8cccbc368dd9d89e5f03cb633c265fd0ddc"));
var z = z1.Subtract(z2);
var s = sig1.S.Subtract(sig2.S);
var n2 = BigInteger.Two.Pow(256).Subtract(new BigInteger("432420386565659656852420866394968145599"));
var expected = new Key(Encoders.Hex.DecodeData("c477f9f65c22cce20657faa5b2d1d8122336f851a508a1ed04e479c34985bf96"), fCompressedIn: false);
var expectedBigInt = new NBitcoin.BouncyCastle.Math.BigInteger(1, Encoders.Hex.DecodeData("c477f9f65c22cce20657faa5b2d1d8122336f851a508a1ed04e479c34985bf96"));
var priv = (z1.Multiply(sig2.S).Subtract(z2.Multiply(sig1.S)).Mod(n)).Divide(sig1.R.Multiply(sig1.S.Subtract(sig2.S)).Mod(n));
Assert.Equal(expectedBigInt.ToString(), priv.ToString());
}
示例6: ChooseRandomPrime
/// <summary>Choose a random prime value for use with RSA</summary>
/// <param name="bitlength">the bit-length of the returned prime</param>
/// <param name="e">the RSA public exponent</param>
/// <returns>a prime p, with (p-1) relatively prime to e</returns>
protected virtual BigInteger ChooseRandomPrime(int bitlength, BigInteger e)
{
for (;;)
{
BigInteger p = new BigInteger(bitlength, 1, param.Random);
if (p.Mod(e).Equals(BigInteger.One))
continue;
if (!p.IsProbablePrime(param.Certainty))
continue;
if (!e.Gcd(p.Subtract(BigInteger.One)).Equals(BigInteger.One))
continue;
return p;
}
}
示例7: procedure_C
/**
* Procedure C
* procedure generates the a value from the given p,q,
* returning the a value.
*/
private BigInteger procedure_C(BigInteger p, BigInteger q)
{
BigInteger pSub1 = p.Subtract(BigInteger.One);
BigInteger pSub1Divq = pSub1.Divide(q);
for(;;)
{
BigInteger d = new BigInteger(p.BitLength, init_random);
// 1 < d < p-1
if (d.CompareTo(BigInteger.One) > 0 && d.CompareTo(pSub1) < 0)
{
BigInteger a = d.ModPow(pSub1Divq, p);
if (a.CompareTo(BigInteger.One) != 0)
{
return a;
}
}
}
}
示例8: SelectGenerator
/*
* Select a high order element of the multiplicative group Zp*
*
* p and q must be s.t. p = 2*q + 1, where p and q are prime (see generateSafePrimes)
*/
internal static BigInteger SelectGenerator(BigInteger p, BigInteger q, SecureRandom random)
{
BigInteger pMinusTwo = p.Subtract(BigInteger.Two);
BigInteger g;
/*
* (see: Handbook of Applied Cryptography 4.80)
*/
// do
// {
// g = BigIntegers.CreateRandomInRange(BigInteger.Two, pMinusTwo, random);
// }
// while (g.ModPow(BigInteger.Two, p).Equals(BigInteger.One)
// || g.ModPow(q, p).Equals(BigInteger.One));
/*
* RFC 2631 2.2.1.2 (and see: Handbook of Applied Cryptography 4.81)
*/
do
{
BigInteger h = BigIntegers.CreateRandomInRange(BigInteger.Two, pMinusTwo, random);
g = h.ModPow(BigInteger.Two, p);
}
while (g.Equals(BigInteger.One));
return g;
}
示例9: Add
public BigInteger Add(
BigInteger value)
{
if (this.sign == 0)
return value;
if (this.sign != value.sign)
{
if (value.sign == 0)
return this;
if (value.sign < 0)
return Subtract(value.Negate());
return value.Subtract(Negate());
}
return AddToMagnitude(value.magnitude);
}
示例10: ReduceBarrett
private static BigInteger ReduceBarrett(BigInteger x, BigInteger m, BigInteger mr, BigInteger yu)
{
int xLen = x.BitLength, mLen = m.BitLength;
if (xLen < mLen)
return x;
if (xLen - mLen > 1)
{
int k = m.magnitude.Length;
BigInteger q1 = x.DivideWords(k - 1);
BigInteger q2 = q1.Multiply(yu); // TODO Only need partial multiplication here
BigInteger q3 = q2.DivideWords(k + 1);
BigInteger r1 = x.RemainderWords(k + 1);
BigInteger r2 = q3.Multiply(m); // TODO Only need partial multiplication here
BigInteger r3 = r2.RemainderWords(k + 1);
x = r1.Subtract(r3);
if (x.sign < 0)
{
x = x.Add(mr);
}
}
while (x.CompareTo(m) >= 0)
{
x = x.Subtract(m);
}
return x;
}
示例11: CalculateGenerator_FIPS186_3_Verifiable
protected virtual BigInteger CalculateGenerator_FIPS186_3_Verifiable(IDigest d, BigInteger p, BigInteger q,
byte[] seed, int index)
{
// A.2.3 Verifiable Canonical Generation of the Generator g
BigInteger e = p.Subtract(BigInteger.One).Divide(q);
byte[] ggen = Hex.Decode("6767656E");
// 7. U = domain_parameter_seed || "ggen" || index || count.
byte[] U = new byte[seed.Length + ggen.Length + 1 + 2];
Array.Copy(seed, 0, U, 0, seed.Length);
Array.Copy(ggen, 0, U, seed.Length, ggen.Length);
U[U.Length - 3] = (byte)index;
byte[] w = new byte[d.GetDigestSize()];
for (int count = 1; count < (1 << 16); ++count)
{
Inc(U);
Hash(d, U, w);
BigInteger W = new BigInteger(1, w);
BigInteger g = W.ModPow(e, p);
if (g.CompareTo(BigInteger.Two) >= 0)
return g;
}
return null;
}
示例12: CalculateGenerator_FIPS186_2
protected virtual BigInteger CalculateGenerator_FIPS186_2(BigInteger p, BigInteger q, SecureRandom r)
{
BigInteger e = p.Subtract(BigInteger.One).Divide(q);
BigInteger pSub2 = p.Subtract(BigInteger.Two);
for (;;)
{
BigInteger h = BigIntegers.CreateRandomInRange(BigInteger.Two, pSub2, r);
BigInteger g = h.ModPow(e, p);
if (g.BitLength > 1)
return g;
}
}
示例13: GenerateParameters_FIPS186_2
protected virtual DsaParameters GenerateParameters_FIPS186_2()
{
byte[] seed = new byte[20];
byte[] part1 = new byte[20];
byte[] part2 = new byte[20];
byte[] u = new byte[20];
int n = (L - 1) / 160;
byte[] w = new byte[L / 8];
if (!(digest is Sha1Digest))
throw new InvalidOperationException("can only use SHA-1 for generating FIPS 186-2 parameters");
for (;;)
{
random.NextBytes(seed);
Hash(digest, seed, part1);
Array.Copy(seed, 0, part2, 0, seed.Length);
Inc(part2);
Hash(digest, part2, part2);
for (int i = 0; i != u.Length; i++)
{
u[i] = (byte)(part1[i] ^ part2[i]);
}
u[0] |= (byte)0x80;
u[19] |= (byte)0x01;
BigInteger q = new BigInteger(1, u);
if (!q.IsProbablePrime(certainty))
continue;
byte[] offset = Arrays.Clone(seed);
Inc(offset);
for (int counter = 0; counter < 4096; ++counter)
{
for (int k = 0; k < n; k++)
{
Inc(offset);
Hash(digest, offset, part1);
Array.Copy(part1, 0, w, w.Length - (k + 1) * part1.Length, part1.Length);
}
Inc(offset);
Hash(digest, offset, part1);
Array.Copy(part1, part1.Length - ((w.Length - (n) * part1.Length)), w, 0, w.Length - n * part1.Length);
w[0] |= (byte)0x80;
BigInteger x = new BigInteger(1, w);
BigInteger c = x.Mod(q.ShiftLeft(1));
BigInteger p = x.Subtract(c.Subtract(BigInteger.One));
if (p.BitLength != L)
continue;
if (p.IsProbablePrime(certainty))
{
BigInteger g = CalculateGenerator_FIPS186_2(p, q, random);
return new DsaParameters(p, q, g, new DsaValidationParameters(seed, counter));
}
}
}
}