本文整理匯總了C#中NBitcoin.BouncyCastle.Math.BigInteger.Add方法的典型用法代碼示例。如果您正苦於以下問題:C# BigInteger.Add方法的具體用法?C# BigInteger.Add怎麽用?C# BigInteger.Add使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類NBitcoin.BouncyCastle.Math.BigInteger
的用法示例。
在下文中一共展示了BigInteger.Add方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的C#代碼示例。
示例1: Derivate
public Key Derivate(byte[] cc, uint nChild, out byte[] ccChild)
{
byte[] l = null;
if((nChild >> 31) == 0)
{
var pubKey = PubKey.ToBytes();
l = Hashes.BIP32Hash(cc, nChild, pubKey[0], pubKey.SafeSubarray(1));
}
else
{
l = Hashes.BIP32Hash(cc, nChild, 0, this.ToBytes());
}
var ll = l.SafeSubarray(0, 32);
var lr = l.SafeSubarray(32, 32);
ccChild = lr;
var parse256LL = new BigInteger(1, ll);
var kPar = new BigInteger(1, vch);
var N = ECKey.CURVE.N;
if(parse256LL.CompareTo(N) >= 0)
throw new InvalidOperationException("You won a prize ! this should happen very rarely. Take a screenshot, and roll the dice again.");
var key = parse256LL.Add(kPar).Mod(N);
if(key == BigInteger.Zero)
throw new InvalidOperationException("You won the big prize ! this would happen only 1 in 2^127. Take a screenshot, and roll the dice again.");
var keyBytes = key.ToByteArrayUnsigned();
if(keyBytes.Length < 32)
keyBytes = new byte[32 - keyBytes.Length].Concat(keyBytes).ToArray();
return new Key(keyBytes);
}
示例2: GetParentExtKey
public ExtKey GetParentExtKey(ExtPubKey parent)
{
if(parent == null)
throw new ArgumentNullException("parent");
if(Depth == 0)
throw new InvalidOperationException("This ExtKey is the root key of the HD tree");
if(IsHardened)
throw new InvalidOperationException("This private key is hardened, so you can't get its parent");
var expectedFingerPrint = parent.CalculateChildFingerprint();
if(parent.Depth != this.Depth - 1 || !expectedFingerPrint.SequenceEqual(vchFingerprint))
throw new ArgumentException("The parent ExtPubKey is not the immediate parent of this ExtKey", "parent");
byte[] l = null;
byte[] ll = new byte[32];
byte[] lr = new byte[32];
var pubKey = parent.PubKey.ToBytes();
l = Hashes.BIP32Hash(parent.vchChainCode, nChild, pubKey[0], pubKey.SafeSubarray(1));
Array.Copy(l, ll, 32);
Array.Copy(l, 32, lr, 0, 32);
var ccChild = lr;
BigInteger parse256LL = new BigInteger(1, ll);
BigInteger N = ECKey.CURVE.N;
if(!ccChild.SequenceEqual(vchChainCode))
throw new InvalidOperationException("The derived chain code of the parent is not equal to this child chain code");
var keyBytes = PrivateKey.ToBytes();
var key = new BigInteger(1, keyBytes);
BigInteger kPar = key.Add(parse256LL.Negate()).Mod(N);
var keyParentBytes = kPar.ToByteArrayUnsigned();
if(keyParentBytes.Length < 32)
keyParentBytes = new byte[32 - keyParentBytes.Length].Concat(keyParentBytes).ToArray();
var parentExtKey = new ExtKey
{
vchChainCode = parent.vchChainCode,
nDepth = parent.Depth,
vchFingerprint = parent.Fingerprint,
nChild = parent.nChild,
key = new Key(keyParentBytes)
};
return parentExtKey;
}
示例3: VerifySignature
// 5.4 pg 29
/**
* return true if the value r and s represent a DSA signature for
* the passed in message (for standard DSA the message should be
* a SHA-1 hash of the real message to be verified).
*/
public virtual bool VerifySignature(byte[] message, BigInteger r, BigInteger s)
{
BigInteger n = key.Parameters.N;
// r and s should both in the range [1,n-1]
if(r.SignValue < 1 || s.SignValue < 1
|| r.CompareTo(n) >= 0 || s.CompareTo(n) >= 0)
{
return false;
}
BigInteger e = CalculateE(n, message);
BigInteger c = s.ModInverse(n);
BigInteger u1 = e.Multiply(c).Mod(n);
BigInteger u2 = r.Multiply(c).Mod(n);
ECPoint G = key.Parameters.G;
ECPoint Q = ((ECPublicKeyParameters)key).Q;
ECPoint point = ECAlgorithms.SumOfTwoMultiplies(G, u1, Q, u2);
if(point.IsInfinity)
return false;
/*
* If possible, avoid normalizing the point (to save a modular inversion in the curve field).
*
* There are ~cofactor elements of the curve field that reduce (modulo the group order) to 'r'.
* If the cofactor is known and small, we generate those possible field values and project each
* of them to the same "denominator" (depending on the particular projective coordinates in use)
* as the calculated point.X. If any of the projected values matches point.X, then we have:
* (point.X / Denominator mod p) mod n == r
* as required, and verification succeeds.
*
* Based on an original idea by Gregory Maxwell (https://github.com/gmaxwell), as implemented in
* the libsecp256k1 project (https://github.com/bitcoin/secp256k1).
*/
ECCurve curve = point.Curve;
if(curve != null)
{
BigInteger cofactor = curve.Cofactor;
if(cofactor != null && cofactor.CompareTo(Eight) <= 0)
{
ECFieldElement D = GetDenominator(curve.CoordinateSystem, point);
if(D != null && !D.IsZero)
{
ECFieldElement X = point.XCoord;
while(curve.IsValidFieldElement(r))
{
ECFieldElement R = curve.FromBigInteger(r).Multiply(D);
if(R.Equals(X))
{
return true;
}
r = r.Add(n);
}
return false;
}
}
}
BigInteger v = point.Normalize().AffineXCoord.ToBigInteger().Mod(n);
return v.Equals(r);
}
示例4: GenerateSafePrimes
/*
* Finds a pair of prime BigInteger's {p, q: p = 2q + 1}
*
* (see: Handbook of Applied Cryptography 4.86)
*/
internal static BigInteger[] GenerateSafePrimes(int size, int certainty, SecureRandom random)
{
BigInteger p, q;
int qLength = size - 1;
int minWeight = size >> 2;
if (size <= 32)
{
for (;;)
{
q = new BigInteger(qLength, 2, random);
p = q.ShiftLeft(1).Add(BigInteger.One);
if (!p.IsProbablePrime(certainty))
continue;
if (certainty > 2 && !q.IsProbablePrime(certainty - 2))
continue;
break;
}
}
else
{
// Note: Modified from Java version for speed
for (;;)
{
q = new BigInteger(qLength, 0, random);
retry:
for (int i = 0; i < primeLists.Length; ++i)
{
int test = q.Remainder(BigPrimeProducts[i]).IntValue;
if (i == 0)
{
int rem3 = test % 3;
if (rem3 != 2)
{
int diff = 2 * rem3 + 2;
q = q.Add(BigInteger.ValueOf(diff));
test = (test + diff) % primeProducts[i];
}
}
int[] primeList = primeLists[i];
for (int j = 0; j < primeList.Length; ++j)
{
int prime = primeList[j];
int qRem = test % prime;
if (qRem == 0 || qRem == (prime >> 1))
{
q = q.Add(Six);
goto retry;
}
}
}
if (q.BitLength != qLength)
continue;
if (!q.RabinMillerTest(2, random))
continue;
p = q.ShiftLeft(1).Add(BigInteger.One);
if (!p.RabinMillerTest(certainty, random))
continue;
if (certainty > 2 && !q.RabinMillerTest(certainty - 2, random))
continue;
/*
* Require a minimum weight of the NAF representation, since low-weight primes may be
* weak against a version of the number-field-sieve for the discrete-logarithm-problem.
*
* See "The number field sieve for integers of low weight", Oliver Schirokauer.
*/
if (WNafUtilities.GetNafWeight(p) < minWeight)
continue;
break;
}
}
return new BigInteger[] { p, q };
}
示例5: And
public BigInteger And(
BigInteger value)
{
if (this.sign == 0 || value.sign == 0)
{
return Zero;
}
int[] aMag = this.sign > 0
? this.magnitude
: Add(One).magnitude;
int[] bMag = value.sign > 0
? value.magnitude
: value.Add(One).magnitude;
bool resultNeg = sign < 0 && value.sign < 0;
int resultLength = System.Math.Max(aMag.Length, bMag.Length);
int[] resultMag = new int[resultLength];
int aStart = resultMag.Length - aMag.Length;
int bStart = resultMag.Length - bMag.Length;
for (int i = 0; i < resultMag.Length; ++i)
{
int aWord = i >= aStart ? aMag[i - aStart] : 0;
int bWord = i >= bStart ? bMag[i - bStart] : 0;
if (this.sign < 0)
{
aWord = ~aWord;
}
if (value.sign < 0)
{
bWord = ~bWord;
}
resultMag[i] = aWord & bWord;
if (resultNeg)
{
resultMag[i] = ~resultMag[i];
}
}
BigInteger result = new BigInteger(1, resultMag, true);
// TODO Optimise this case
if (resultNeg)
{
result = result.Not();
}
return result;
}
示例6: ReduceBarrett
private static BigInteger ReduceBarrett(BigInteger x, BigInteger m, BigInteger mr, BigInteger yu)
{
int xLen = x.BitLength, mLen = m.BitLength;
if (xLen < mLen)
return x;
if (xLen - mLen > 1)
{
int k = m.magnitude.Length;
BigInteger q1 = x.DivideWords(k - 1);
BigInteger q2 = q1.Multiply(yu); // TODO Only need partial multiplication here
BigInteger q3 = q2.DivideWords(k + 1);
BigInteger r1 = x.RemainderWords(k + 1);
BigInteger r2 = q3.Multiply(m); // TODO Only need partial multiplication here
BigInteger r3 = r2.RemainderWords(k + 1);
x = r1.Subtract(r3);
if (x.sign < 0)
{
x = x.Add(mr);
}
}
while (x.CompareTo(m) >= 0)
{
x = x.Subtract(m);
}
return x;
}