本文整理匯總了C#中NBitcoin.BouncyCastle.Math.BigInteger.ShiftLeft方法的典型用法代碼示例。如果您正苦於以下問題:C# BigInteger.ShiftLeft方法的具體用法?C# BigInteger.ShiftLeft怎麽用?C# BigInteger.ShiftLeft使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類NBitcoin.BouncyCastle.Math.BigInteger
的用法示例。
在下文中一共展示了BigInteger.ShiftLeft方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的C#代碼示例。
示例1: GenerateSafePrimes
/*
* Finds a pair of prime BigInteger's {p, q: p = 2q + 1}
*
* (see: Handbook of Applied Cryptography 4.86)
*/
internal static BigInteger[] GenerateSafePrimes(int size, int certainty, SecureRandom random)
{
BigInteger p, q;
int qLength = size - 1;
int minWeight = size >> 2;
if (size <= 32)
{
for (;;)
{
q = new BigInteger(qLength, 2, random);
p = q.ShiftLeft(1).Add(BigInteger.One);
if (!p.IsProbablePrime(certainty))
continue;
if (certainty > 2 && !q.IsProbablePrime(certainty - 2))
continue;
break;
}
}
else
{
// Note: Modified from Java version for speed
for (;;)
{
q = new BigInteger(qLength, 0, random);
retry:
for (int i = 0; i < primeLists.Length; ++i)
{
int test = q.Remainder(BigPrimeProducts[i]).IntValue;
if (i == 0)
{
int rem3 = test % 3;
if (rem3 != 2)
{
int diff = 2 * rem3 + 2;
q = q.Add(BigInteger.ValueOf(diff));
test = (test + diff) % primeProducts[i];
}
}
int[] primeList = primeLists[i];
for (int j = 0; j < primeList.Length; ++j)
{
int prime = primeList[j];
int qRem = test % prime;
if (qRem == 0 || qRem == (prime >> 1))
{
q = q.Add(Six);
goto retry;
}
}
}
if (q.BitLength != qLength)
continue;
if (!q.RabinMillerTest(2, random))
continue;
p = q.ShiftLeft(1).Add(BigInteger.One);
if (!p.RabinMillerTest(certainty, random))
continue;
if (certainty > 2 && !q.RabinMillerTest(certainty - 2, random))
continue;
/*
* Require a minimum weight of the NAF representation, since low-weight primes may be
* weak against a version of the number-field-sieve for the discrete-logarithm-problem.
*
* See "The number field sieve for integers of low weight", Oliver Schirokauer.
*/
if (WNafUtilities.GetNafWeight(p) < minWeight)
continue;
break;
}
}
return new BigInteger[] { p, q };
}
示例2: Multiply
public BigInteger Multiply(
BigInteger val)
{
if (val == this)
return Square();
if ((sign & val.sign) == 0)
return Zero;
if (val.QuickPow2Check()) // val is power of two
{
BigInteger result = this.ShiftLeft(val.Abs().BitLength - 1);
return val.sign > 0 ? result : result.Negate();
}
if (this.QuickPow2Check()) // this is power of two
{
BigInteger result = val.ShiftLeft(this.Abs().BitLength - 1);
return this.sign > 0 ? result : result.Negate();
}
int resLength = magnitude.Length + val.magnitude.Length;
int[] res = new int[resLength];
Multiply(res, this.magnitude, val.magnitude);
int resSign = sign ^ val.sign ^ 1;
return new BigInteger(resSign, res, true);
}
示例3: GenerateParameters_FIPS186_3
/**
* generate suitable parameters for DSA, in line with
* <i>FIPS 186-3 A.1 Generation of the FFC Primes p and q</i>.
*/
protected virtual DsaParameters GenerateParameters_FIPS186_3()
{
// A.1.1.2 Generation of the Probable Primes p and q Using an Approved Hash Function
IDigest d = digest;
int outlen = d.GetDigestSize() * 8;
// 1. Check that the (L, N) pair is in the list of acceptable (L, N pairs) (see Section 4.2). If
// the pair is not in the list, then return INVALID.
// Note: checked at initialisation
// 2. If (seedlen < N), then return INVALID.
// FIXME This should be configurable (must be >= N)
int seedlen = N;
byte[] seed = new byte[seedlen / 8];
// 3. n = ceiling(L ⁄ outlen) – 1.
int n = (L - 1) / outlen;
// 4. b = L – 1 – (n ∗ outlen).
int b = (L - 1) % outlen;
byte[] output = new byte[d.GetDigestSize()];
for (;;)
{
// 5. Get an arbitrary sequence of seedlen bits as the domain_parameter_seed.
random.NextBytes(seed);
// 6. U = Hash (domain_parameter_seed) mod 2^(N–1).
Hash(d, seed, output);
BigInteger U = new BigInteger(1, output).Mod(BigInteger.One.ShiftLeft(N - 1));
// 7. q = 2^(N–1) + U + 1 – ( U mod 2).
BigInteger q = BigInteger.One.ShiftLeft(N - 1).Add(U).Add(BigInteger.One).Subtract(
U.Mod(BigInteger.Two));
// 8. Test whether or not q is prime as specified in Appendix C.3.
// TODO Review C.3 for primality checking
if (!q.IsProbablePrime(certainty))
{
// 9. If q is not a prime, then go to step 5.
continue;
}
// 10. offset = 1.
// Note: 'offset' value managed incrementally
byte[] offset = Arrays.Clone(seed);
// 11. For counter = 0 to (4L – 1) do
int counterLimit = 4 * L;
for (int counter = 0; counter < counterLimit; ++counter)
{
// 11.1 For j = 0 to n do
// Vj = Hash ((domain_parameter_seed + offset + j) mod 2^seedlen).
// 11.2 W = V0 + (V1 ∗ 2^outlen) + ... + (V^(n–1) ∗ 2^((n–1) ∗ outlen)) + ((Vn mod 2^b) ∗ 2^(n ∗ outlen)).
// TODO Assemble w as a byte array
BigInteger W = BigInteger.Zero;
for (int j = 0, exp = 0; j <= n; ++j, exp += outlen)
{
Inc(offset);
Hash(d, offset, output);
BigInteger Vj = new BigInteger(1, output);
if (j == n)
{
Vj = Vj.Mod(BigInteger.One.ShiftLeft(b));
}
W = W.Add(Vj.ShiftLeft(exp));
}
// 11.3 X = W + 2^(L–1). Comment: 0 ≤ W < 2L–1; hence, 2L–1 ≤ X < 2L.
BigInteger X = W.Add(BigInteger.One.ShiftLeft(L - 1));
// 11.4 c = X mod 2q.
BigInteger c = X.Mod(q.ShiftLeft(1));
// 11.5 p = X - (c - 1). Comment: p ≡ 1 (mod 2q).
BigInteger p = X.Subtract(c.Subtract(BigInteger.One));
// 11.6 If (p < 2^(L - 1)), then go to step 11.9
if (p.BitLength != L)
continue;
// 11.7 Test whether or not p is prime as specified in Appendix C.3.
// TODO Review C.3 for primality checking
if (p.IsProbablePrime(certainty))
{
// 11.8 If p is determined to be prime, then return VALID and the values of p, q and
// (optionally) the values of domain_parameter_seed and counter.
// TODO Make configurable (8-bit unsigned)?
if (usageIndex >= 0)
{
BigInteger g = CalculateGenerator_FIPS186_3_Verifiable(d, p, q, seed, usageIndex);
if (g != null)
return new DsaParameters(p, q, g, new DsaValidationParameters(seed, counter, usageIndex));
//.........這裏部分代碼省略.........
示例4: ModPowMonty
private static BigInteger ModPowMonty(BigInteger b, BigInteger e, BigInteger m, bool convert)
{
int n = m.magnitude.Length;
int powR = 32 * n;
bool smallMontyModulus = m.BitLength + 2 <= powR;
uint mDash = (uint)m.GetMQuote();
// tmp = this * R mod m
if (convert)
{
b = b.ShiftLeft(powR).Remainder(m);
}
int[] yAccum = new int[n + 1];
int[] zVal = b.magnitude;
Debug.Assert(zVal.Length <= n);
if (zVal.Length < n)
{
int[] tmp = new int[n];
zVal.CopyTo(tmp, n - zVal.Length);
zVal = tmp;
}
// Sliding window from MSW to LSW
int extraBits = 0;
// Filter the common case of small RSA exponents with few bits set
if (e.magnitude.Length > 1 || e.BitCount > 2)
{
int expLength = e.BitLength;
while (expLength > ExpWindowThresholds[extraBits])
{
++extraBits;
}
}
int numPowers = 1 << extraBits;
int[][] oddPowers = new int[numPowers][];
oddPowers[0] = zVal;
int[] zSquared = Arrays.Clone(zVal);
SquareMonty(yAccum, zSquared, m.magnitude, mDash, smallMontyModulus);
for (int i = 1; i < numPowers; ++i)
{
oddPowers[i] = Arrays.Clone(oddPowers[i - 1]);
MultiplyMonty(yAccum, oddPowers[i], zSquared, m.magnitude, mDash, smallMontyModulus);
}
int[] windowList = GetWindowList(e.magnitude, extraBits);
Debug.Assert(windowList.Length > 1);
int window = windowList[0];
int mult = window & 0xFF, lastZeroes = window >> 8;
int[] yVal;
if (mult == 1)
{
yVal = zSquared;
--lastZeroes;
}
else
{
yVal = Arrays.Clone(oddPowers[mult >> 1]);
}
int windowPos = 1;
while ((window = windowList[windowPos++]) != -1)
{
mult = window & 0xFF;
int bits = lastZeroes + BitLengthTable[mult];
for (int j = 0; j < bits; ++j)
{
SquareMonty(yAccum, yVal, m.magnitude, mDash, smallMontyModulus);
}
MultiplyMonty(yAccum, yVal, oddPowers[mult >> 1], m.magnitude, mDash, smallMontyModulus);
lastZeroes = window >> 8;
}
for (int i = 0; i < lastZeroes; ++i)
{
SquareMonty(yAccum, yVal, m.magnitude, mDash, smallMontyModulus);
}
if (convert)
{
// Return y * R^(-1) mod m
MontgomeryReduce(yVal, m.magnitude, mDash);
}
else if (smallMontyModulus && CompareTo(0, yVal, 0, m.magnitude) >= 0)
{
Subtract(0, yVal, 0, m.magnitude);
}
return new BigInteger(1, yVal, true);
//.........這裏部分代碼省略.........
示例5: GenerateParameters_FIPS186_2
protected virtual DsaParameters GenerateParameters_FIPS186_2()
{
byte[] seed = new byte[20];
byte[] part1 = new byte[20];
byte[] part2 = new byte[20];
byte[] u = new byte[20];
int n = (L - 1) / 160;
byte[] w = new byte[L / 8];
if (!(digest is Sha1Digest))
throw new InvalidOperationException("can only use SHA-1 for generating FIPS 186-2 parameters");
for (;;)
{
random.NextBytes(seed);
Hash(digest, seed, part1);
Array.Copy(seed, 0, part2, 0, seed.Length);
Inc(part2);
Hash(digest, part2, part2);
for (int i = 0; i != u.Length; i++)
{
u[i] = (byte)(part1[i] ^ part2[i]);
}
u[0] |= (byte)0x80;
u[19] |= (byte)0x01;
BigInteger q = new BigInteger(1, u);
if (!q.IsProbablePrime(certainty))
continue;
byte[] offset = Arrays.Clone(seed);
Inc(offset);
for (int counter = 0; counter < 4096; ++counter)
{
for (int k = 0; k < n; k++)
{
Inc(offset);
Hash(digest, offset, part1);
Array.Copy(part1, 0, w, w.Length - (k + 1) * part1.Length, part1.Length);
}
Inc(offset);
Hash(digest, offset, part1);
Array.Copy(part1, part1.Length - ((w.Length - (n) * part1.Length)), w, 0, w.Length - n * part1.Length);
w[0] |= (byte)0x80;
BigInteger x = new BigInteger(1, w);
BigInteger c = x.Mod(q.ShiftLeft(1));
BigInteger p = x.Subtract(c.Subtract(BigInteger.One));
if (p.BitLength != L)
continue;
if (p.IsProbablePrime(certainty))
{
BigInteger g = CalculateGenerator_FIPS186_2(p, q, random);
return new DsaParameters(p, q, g, new DsaValidationParameters(seed, counter));
}
}
}
}