當前位置: 首頁>>代碼示例>>C#>>正文


C# BigInteger.Multiply方法代碼示例

本文整理匯總了C#中NBitcoin.BouncyCastle.Math.BigInteger.Multiply方法的典型用法代碼示例。如果您正苦於以下問題:C# BigInteger.Multiply方法的具體用法?C# BigInteger.Multiply怎麽用?C# BigInteger.Multiply使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在NBitcoin.BouncyCastle.Math.BigInteger的用法示例。


在下文中一共展示了BigInteger.Multiply方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的C#代碼示例。

示例1: GenerateSignature

		/**
		 * generate a signature for the given message using the key we were
		 * initialised with. For conventional Gost3410 the message should be a Gost3411
		 * hash of the message of interest.
		 *
		 * @param message the message that will be verified later.
		 */
		public BigInteger[] GenerateSignature(
			byte[] message)
		{
			byte[] mRev = new byte[message.Length]; // conversion is little-endian
			for (int i = 0; i != mRev.Length; i++)
			{
				mRev[i] = message[mRev.Length - 1 - i];
			}

			BigInteger m = new BigInteger(1, mRev);
			Gost3410Parameters parameters = key.Parameters;
			BigInteger k;

			do
			{
				k = new BigInteger(parameters.Q.BitLength, random);
			}
			while (k.CompareTo(parameters.Q) >= 0);

			BigInteger r = parameters.A.ModPow(k, parameters.P).Mod(parameters.Q);

			BigInteger s = k.Multiply(m).
				Add(((Gost3410PrivateKeyParameters)key).X.Multiply(r)).
				Mod(parameters.Q);

			return new BigInteger[]{ r, s };
		}
開發者ID:woutersmit,項目名稱:NBitcoin,代碼行數:34,代碼來源:GOST3410Signer.cs

示例2: PlayingWithSignatures

		//[Fact]
		//http://bitcoin.stackexchange.com/questions/25814/ecdsa-signature-and-the-z-value
		//http://www.nilsschneider.net/2013/01/28/recovering-bitcoin-private-keys.html
		public void PlayingWithSignatures()
		{
			var script1 = new Script("30440220d47ce4c025c35ec440bc81d99834a624875161a26bf56ef7fdc0f5d52f843ad1022044e1ff2dfd8102cf7a47c21d5c9fd5701610d04953c6836596b4fe9dd2f53e3e01 04dbd0c61532279cf72981c3584fc32216e0127699635c2789f549e0730c059b81ae133016a69c21e23f1859a95f06d52b7bf149a8f2fe4e8535c8a829b449c5ff");

			var script2 = new Script("30440220d47ce4c025c35ec440bc81d99834a624875161a26bf56ef7fdc0f5d52f843ad102209a5f1c75e461d7ceb1cf3cab9013eb2dc85b6d0da8c3c6e27e3a5a5b3faa5bab01 04dbd0c61532279cf72981c3584fc32216e0127699635c2789f549e0730c059b81ae133016a69c21e23f1859a95f06d52b7bf149a8f2fe4e8535c8a829b449c5ff");

			var sig1 = (PayToPubkeyHashTemplate.Instance.ExtractScriptSigParameters(script1).TransactionSignature.Signature);
			var sig2 = (PayToPubkeyHashTemplate.Instance.ExtractScriptSigParameters(script2).TransactionSignature.Signature);

			var n = ECKey.CURVE.N;
			var z1 = new BigInteger(1, Encoders.Hex.DecodeData("c0e2d0a89a348de88fda08211c70d1d7e52ccef2eb9459911bf977d587784c6e"));
			var z2 = new BigInteger(1, Encoders.Hex.DecodeData("17b0f41c8c337ac1e18c98759e83a8cccbc368dd9d89e5f03cb633c265fd0ddc"));

			var z = z1.Subtract(z2);
			var s = sig1.S.Subtract(sig2.S);
			var n2 = BigInteger.Two.Pow(256).Subtract(new BigInteger("432420386565659656852420866394968145599"));

			var expected = new Key(Encoders.Hex.DecodeData("c477f9f65c22cce20657faa5b2d1d8122336f851a508a1ed04e479c34985bf96"), fCompressedIn: false);

			var expectedBigInt = new NBitcoin.BouncyCastle.Math.BigInteger(1, Encoders.Hex.DecodeData("c477f9f65c22cce20657faa5b2d1d8122336f851a508a1ed04e479c34985bf96"));
			var priv = (z1.Multiply(sig2.S).Subtract(z2.Multiply(sig1.S)).Mod(n)).Divide(sig1.R.Multiply(sig1.S.Subtract(sig2.S)).Mod(n));
			Assert.Equal(expectedBigInt.ToString(), priv.ToString());

		}
開發者ID:knocte,項目名稱:NBitcoin,代碼行數:27,代碼來源:transaction_tests.cs

示例3: VerifySignature

        // 5.4 pg 29
        /**
         * return true if the value r and s represent a DSA signature for
         * the passed in message (for standard DSA the message should be
         * a SHA-1 hash of the real message to be verified).
         */
        public virtual bool VerifySignature(byte[] message, BigInteger r, BigInteger s)
        {
            BigInteger n = key.Parameters.N;

            // r and s should both in the range [1,n-1]
            if (r.SignValue < 1 || s.SignValue < 1
                || r.CompareTo(n) >= 0 || s.CompareTo(n) >= 0)
            {
                return false;
            }

            BigInteger e = CalculateE(n, message);
            BigInteger c = s.ModInverse(n);

            BigInteger u1 = e.Multiply(c).Mod(n);
            BigInteger u2 = r.Multiply(c).Mod(n);

            ECPoint G = key.Parameters.G;
            ECPoint Q = ((ECPublicKeyParameters) key).Q;

            ECPoint point = ECAlgorithms.SumOfTwoMultiplies(G, u1, Q, u2).Normalize();

            if (point.IsInfinity)
                return false;

            BigInteger v = point.AffineXCoord.ToBigInteger().Mod(n);

            return v.Equals(r);
        }
開發者ID:woutersmit,項目名稱:NBitcoin,代碼行數:35,代碼來源:ECDsaSigner.cs

示例4: VerifySignature

		// 5.4 pg 29
		/**
         * return true if the value r and s represent a DSA signature for
         * the passed in message (for standard DSA the message should be
         * a SHA-1 hash of the real message to be verified).
         */
		public virtual bool VerifySignature(byte[] message, BigInteger r, BigInteger s)
		{
			BigInteger n = key.Parameters.N;

			// r and s should both in the range [1,n-1]
			if(r.SignValue < 1 || s.SignValue < 1
				|| r.CompareTo(n) >= 0 || s.CompareTo(n) >= 0)
			{
				return false;
			}

			BigInteger e = CalculateE(n, message);
			BigInteger c = s.ModInverse(n);

			BigInteger u1 = e.Multiply(c).Mod(n);
			BigInteger u2 = r.Multiply(c).Mod(n);

			ECPoint G = key.Parameters.G;
			ECPoint Q = ((ECPublicKeyParameters)key).Q;

			ECPoint point = ECAlgorithms.SumOfTwoMultiplies(G, u1, Q, u2);

			if(point.IsInfinity)
				return false;

			/*
             * If possible, avoid normalizing the point (to save a modular inversion in the curve field).
             * 
             * There are ~cofactor elements of the curve field that reduce (modulo the group order) to 'r'.
             * If the cofactor is known and small, we generate those possible field values and project each
             * of them to the same "denominator" (depending on the particular projective coordinates in use)
             * as the calculated point.X. If any of the projected values matches point.X, then we have:
             *     (point.X / Denominator mod p) mod n == r
             * as required, and verification succeeds.
             * 
             * Based on an original idea by Gregory Maxwell (https://github.com/gmaxwell), as implemented in
             * the libsecp256k1 project (https://github.com/bitcoin/secp256k1).
             */
			ECCurve curve = point.Curve;
			if(curve != null)
			{
				BigInteger cofactor = curve.Cofactor;
				if(cofactor != null && cofactor.CompareTo(Eight) <= 0)
				{
					ECFieldElement D = GetDenominator(curve.CoordinateSystem, point);
					if(D != null && !D.IsZero)
					{
						ECFieldElement X = point.XCoord;
						while(curve.IsValidFieldElement(r))
						{
							ECFieldElement R = curve.FromBigInteger(r).Multiply(D);
							if(R.Equals(X))
							{
								return true;
							}
							r = r.Add(n);
						}
						return false;
					}
				}
			}

			BigInteger v = point.Normalize().AffineXCoord.ToBigInteger().Mod(n);
			return v.Equals(r);
		}
開發者ID:Nethereum,項目名稱:Nethereum,代碼行數:71,代碼來源:ECDsaSigner.cs

示例5: VerifySignature

		/**
		 * return true if the value r and s represent a Gost3410 signature for
		 * the passed in message for standard Gost3410 the message should be a
		 * Gost3411 hash of the real message to be verified.
		 */
		public bool VerifySignature(
			byte[]		message,
			BigInteger	r,
			BigInteger	s)
		{
			byte[] mRev = new byte[message.Length]; // conversion is little-endian
			for (int i = 0; i != mRev.Length; i++)
			{
				mRev[i] = message[mRev.Length - 1 - i];
			}

			BigInteger m = new BigInteger(1, mRev);
			Gost3410Parameters parameters = key.Parameters;

			if (r.SignValue < 0 || parameters.Q.CompareTo(r) <= 0)
			{
				return false;
			}

			if (s.SignValue < 0 || parameters.Q.CompareTo(s) <= 0)
			{
				return false;
			}

			BigInteger v = m.ModPow(parameters.Q.Subtract(BigInteger.Two), parameters.Q);

			BigInteger z1 = s.Multiply(v).Mod(parameters.Q);
			BigInteger z2 = (parameters.Q.Subtract(r)).Multiply(v).Mod(parameters.Q);

			z1 = parameters.A.ModPow(z1, parameters.P);
			z2 = ((Gost3410PublicKeyParameters)key).Y.ModPow(z2, parameters.P);

			BigInteger u = z1.Multiply(z2).Mod(parameters.P).Mod(parameters.Q);

			return u.Equals(r);
		}
開發者ID:woutersmit,項目名稱:NBitcoin,代碼行數:41,代碼來源:GOST3410Signer.cs

示例6: BlindMessage

		/*
		* Blind message with the blind factor.
		*/
		private BigInteger BlindMessage(
			BigInteger msg)
		{
			BigInteger blindMsg = blindingFactor;
			blindMsg = msg.Multiply(blindMsg.ModPow(key.Exponent, key.Modulus));
			blindMsg = blindMsg.Mod(key.Modulus);

			return blindMsg;
		}
開發者ID:woutersmit,項目名稱:NBitcoin,代碼行數:12,代碼來源:RSABlindingEngine.cs

示例7: ProcessBlock

		/**
		* Process a single block using the basic ElGamal algorithm.
		*
		* @param in the input array.
		* @param inOff the offset into the input buffer where the data starts.
		* @param length the length of the data to be processed.
		* @return the result of the ElGamal process.
		* @exception DataLengthException the input block is too large.
		*/
		public byte[] ProcessBlock(
			byte[]	input,
			int		inOff,
			int		length)
		{
			if (key == null)
				throw new InvalidOperationException("ElGamal engine not initialised");

			int maxLength = forEncryption
				?	(bitSize - 1 + 7) / 8
				:	GetInputBlockSize();

			if (length > maxLength)
				throw new DataLengthException("input too large for ElGamal cipher.\n");

			BigInteger p = key.Parameters.P;

			byte[] output;
			if (key is ElGamalPrivateKeyParameters) // decryption
			{
				int halfLength = length / 2;
				BigInteger gamma = new BigInteger(1, input, inOff, halfLength);
				BigInteger phi = new BigInteger(1, input, inOff + halfLength, halfLength);

				ElGamalPrivateKeyParameters priv = (ElGamalPrivateKeyParameters) key;

				// a shortcut, which generally relies on p being prime amongst other things.
				// if a problem with this shows up, check the p and g values!
				BigInteger m = gamma.ModPow(p.Subtract(BigInteger.One).Subtract(priv.X), p).Multiply(phi).Mod(p);

				output = m.ToByteArrayUnsigned();
			}
			else // encryption
			{
				BigInteger tmp = new BigInteger(1, input, inOff, length);

				if (tmp.BitLength >= p.BitLength)
					throw new DataLengthException("input too large for ElGamal cipher.\n");


				ElGamalPublicKeyParameters pub = (ElGamalPublicKeyParameters) key;

				BigInteger pSub2 = p.Subtract(BigInteger.Two);

				// TODO In theory, a series of 'k', 'g.ModPow(k, p)' and 'y.ModPow(k, p)' can be pre-calculated
				BigInteger k;
				do
				{
					k = new BigInteger(p.BitLength, random);
				}
				while (k.SignValue == 0 || k.CompareTo(pSub2) > 0);

				BigInteger g = key.Parameters.G;
				BigInteger gamma = g.ModPow(k, p);
				BigInteger phi = tmp.Multiply(pub.Y.ModPow(k, p)).Mod(p);

				output = new byte[this.GetOutputBlockSize()];

				// TODO Add methods to allow writing BigInteger to existing byte array?
				byte[] out1 = gamma.ToByteArrayUnsigned();
				byte[] out2 = phi.ToByteArrayUnsigned();
				out1.CopyTo(output, output.Length / 2 - out1.Length);
				out2.CopyTo(output, output.Length - out2.Length);
			}

			return output;
		}
開發者ID:woutersmit,項目名稱:NBitcoin,代碼行數:76,代碼來源:ElGamalEngine.cs

示例8: VerifySignature

        /**
         * return true if the value r and s represent a DSA signature for
         * the passed in message for standard DSA the message should be a
         * SHA-1 hash of the real message to be verified.
         */
        public virtual bool VerifySignature(byte[] message, BigInteger r, BigInteger s)
        {
            DsaParameters parameters = key.Parameters;
            BigInteger q = parameters.Q;
            BigInteger m = CalculateE(q, message);

            if (r.SignValue <= 0 || q.CompareTo(r) <= 0)
            {
                return false;
            }

            if (s.SignValue <= 0 || q.CompareTo(s) <= 0)
            {
                return false;
            }

            BigInteger w = s.ModInverse(q);

            BigInteger u1 = m.Multiply(w).Mod(q);
            BigInteger u2 = r.Multiply(w).Mod(q);

            BigInteger p = parameters.P;
            u1 = parameters.G.ModPow(u1, p);
            u2 = ((DsaPublicKeyParameters)key).Y.ModPow(u2, p);

            BigInteger v = u1.Multiply(u2).Mod(p).Mod(q);

            return v.Equals(r);
        }
開發者ID:woutersmit,項目名稱:NBitcoin,代碼行數:34,代碼來源:DsaSigner.cs

示例9: GenerateSignature

        /**
         * generate a signature for the given message using the key we were
         * initialised with. For conventional GOST3410 the message should be a GOST3411
         * hash of the message of interest.
         *
         * @param message the message that will be verified later.
         */
        public BigInteger[] GenerateSignature(
            byte[] message)
        {
            byte[] mRev = new byte[message.Length]; // conversion is little-endian
            for (int i = 0; i != mRev.Length; i++)
            {
                mRev[i] = message[mRev.Length - 1 - i];
            }

            BigInteger e = new BigInteger(1, mRev);

            ECDomainParameters ec = key.Parameters;
            BigInteger n = ec.N;
            BigInteger d = ((ECPrivateKeyParameters)key).D;

            BigInteger r, s = null;

            ECMultiplier basePointMultiplier = CreateBasePointMultiplier();

            do // generate s
            {
                BigInteger k;
                do // generate r
                {
                    do
                    {
                        k = new BigInteger(n.BitLength, random);
                    }
                    while (k.SignValue == 0);

                    ECPoint p = basePointMultiplier.Multiply(ec.G, k).Normalize();

                    r = p.AffineXCoord.ToBigInteger().Mod(n);
                }
                while (r.SignValue == 0);

                s = (k.Multiply(e)).Add(d.Multiply(r)).Mod(n);
            }
            while (s.SignValue == 0);

            return new BigInteger[]{ r, s };
        }
開發者ID:woutersmit,項目名稱:NBitcoin,代碼行數:49,代碼來源:ECGOST3410Signer.cs

示例10: VerifySignature

        /**
         * return true if the value r and s represent a GOST3410 signature for
         * the passed in message (for standard GOST3410 the message should be
         * a GOST3411 hash of the real message to be verified).
         */
        public bool VerifySignature(
            byte[]		message,
            BigInteger	r,
            BigInteger	s)
        {
            byte[] mRev = new byte[message.Length]; // conversion is little-endian
            for (int i = 0; i != mRev.Length; i++)
            {
                mRev[i] = message[mRev.Length - 1 - i];
            }

            BigInteger e = new BigInteger(1, mRev);
            BigInteger n = key.Parameters.N;

            // r in the range [1,n-1]
            if (r.CompareTo(BigInteger.One) < 0 || r.CompareTo(n) >= 0)
            {
                return false;
            }

            // s in the range [1,n-1]
            if (s.CompareTo(BigInteger.One) < 0 || s.CompareTo(n) >= 0)
            {
                return false;
            }

            BigInteger v = e.ModInverse(n);

            BigInteger z1 = s.Multiply(v).Mod(n);
            BigInteger z2 = (n.Subtract(r)).Multiply(v).Mod(n);

            ECPoint G = key.Parameters.G; // P
            ECPoint Q = ((ECPublicKeyParameters)key).Q;

            ECPoint point = ECAlgorithms.SumOfTwoMultiplies(G, z1, Q, z2).Normalize();

            if (point.IsInfinity)
                return false;

            BigInteger R = point.AffineXCoord.ToBigInteger().Mod(n);

            return R.Equals(r);
        }
開發者ID:woutersmit,項目名稱:NBitcoin,代碼行數:48,代碼來源:ECGOST3410Signer.cs


注:本文中的NBitcoin.BouncyCastle.Math.BigInteger.Multiply方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。